請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55894完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧奕璋 | |
| dc.contributor.author | Yi-Hsien Lin | en |
| dc.contributor.author | 林奕憲 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:10:19Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2014-09-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | [1] C. Zhou and S. K. Nayar, 'Computational cameras: convergence of optics and processing,' Image Processing, IEEE Transactions on, vol. 20, pp. 3322-3340, 2011.
[2] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, 'High performance imaging using large camera arrays,' in ACM Transactions on Graphics (TOG), 2005, pp. 765-776. [3] S. Wanner and B. Goldluecke, 'Globally consistent depth labeling of 4D light fields,' in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, 2012, pp. 41-48. [4] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. H. Gross, 'Scene reconstruction from high spatio-angular resolution light fields,' ACM Trans. Graph., vol. 32, p. 73, 2013. [5] C.-K. Liang, G. Liu, and H. H. Chen, 'Light field acquisition using programmable aperture camera,' in Image Processing, 2007. ICIP 2007. IEEE International Conference on, 2007, pp. V-233-V-236. [6] D. Reddy, J. Bai, and R. Ramamoorthi, 'External mask based depth and light field camera,' in Computer Vision Workshops (ICCVW), 2013 IEEE International Conference on, 2013, pp. 37-44. [7] C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen, 'Programmable aperture photography: multiplexed light field acquisition,' in ACM Transactions on Graphics (TOG), 2008, p. 55. [8] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, 'Light field photography with a hand-held plenoptic camera,' Computer Science Technical Report CSTR, vol. 2, 2005. [9] R. Ng, 'Fourier slice photography,' in ACM Transactions on Graphics (TOG), 2005, pp. 735-744. [10] T. Georgiev and A. Lumsdaine, 'Focused plenoptic camera and rendering,' Journal of Electronic Imaging, vol. 19, pp. 021106-021106-11, 2010. [11] A. Lumsdaine and T. Georgiev, 'Full resolution lightfield rendering,' Indiana University and Adobe Systems, Tech. Rep, 2008. [12] C.-W. Chang, 'Design of Pinhole Array Masks and Image Processing Algorithms for Light Field Cameras,' M.S., National Taiwan University, 2012. [13] T. Georgiev and A. Lumsdaine, 'Superresolution with plenoptic camera 2.0,' Adobe Systems Incorporated, Tech. Rep, 2009. [14] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, 'Image and depth from a conventional camera with a coded aperture,' in ACM Transactions on Graphics (TOG), 2007, p. 70. [15] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, 'An introduction to total variation for image analysis,' Theoretical foundations and numerical methods for sparse recovery, vol. 9, pp. 263-340, 2010. [16] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, 'Fast and robust multiframe super resolution,' Image Processing, IEEE Transactions on, vol. 13, pp. 1327-1344, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55894 | - |
| dc.description.abstract | 光場相機可以記錄來自同一物體不同光線角度的四維光場資料,經由數位變焦處理後,便可後製出可供使用者觀看之二維影像。然而,受到感光器像素的限制,以空間解析度換取足夠的角度解析度記錄光線時,會造成後製的影像空間解析度大幅降低。因此,如何有效的提升空間解析度對於光場相機的發展頗為重要。
在本篇論文中,我們提出一套考慮光場特性之影像超解析演算法。藉由推導出的光學成像性質,可以得知物體在各個子影像中重複成像的情況,因為成像結果的大小、位置與物體的深度有關,只要取得物體的深度圖,就可以把這些重複成像都擷取出來,並利用這些低解析度影像還原出一張較高解析度的影像。 影像超解析演算法通常耗時且計算量龐大,為了加快運算時間,我們以積體電路實作出適用於光場資料之影像超解析處理器,輸入之四維光場之像素尺寸為27x44x46x46,輸出之二維影像之像素尺寸為2112x1296,以影像長寬放大三倍的情況而言,整個流程可於2.783秒內完成,與軟體相比加速可達14倍,使用的製程為TSMC 90nm、運作頻率為125 MHz、晶片尺寸為 1.377 mm2、消耗功率為 105.4 mW。 | zh_TW |
| dc.description.abstract | We can use 4D light field cameras to record different directions of light rays from the same object. After digital refocusing, we can get an ordinary 2D image. Because of the limitation of the sensor on the camera, when we trade the spatial resolution for the angular resolution, the resolution of the output images will be small. Therefore, it becomes an important issue to raise the spatial resolution for light field images.
In this thesis, we propose an image super resolution method for light field images. We use matrix optics to obtain important light field imaging characteristics. Since the depth of an object is related to the disparity of the repeated light filed sub-images, as long as we can get the depth map of the light field image, we can use the low resolution repeated images to recover a higher resolution image. The image super resolution algorithm is time-consuming. Therefore, we design a processor using TSMC 90nm cell library to speed up calculations. The processor operates at 125 MHz and is capable of processing a 44x27x46x46 light field image to a super resolution result of 2112x1296 pixels within 2.783 s. It is 14 times faster than the software version. Its chip area is 1.377 mm2, and its power consumption is 105.4 mW. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:10:19Z (GMT). No. of bitstreams: 1 ntu-103-R01943092-1.pdf: 6394386 bytes, checksum: 13672ff2d5e5025e00b2ea53dc621139 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xii Chapter 1 緒論 1 1.1 光場簡介 1 1.2 各式光場相機介紹 2 1.3 針孔陣列遮罩光場相機 3 1.4 論文架構 5 Chapter 2 針孔陣列遮罩光學成像分析 6 2.1 簡易矩陣光學 6 2.1.1 光的轉移矩陣 7 2.1.2 光的折射矩陣 7 2.1.3 透鏡系統矩陣 9 2.2 針孔陣列遮罩光學成像 10 2.3 針孔陣列遮罩光學成像特性 13 2.3.1 子影像翻轉 14 2.3.2 重複成像 15 2.4 針孔陣列遮罩成像特性分析與應用 19 2.4.1 物體深度與子影像重複位置 19 2.4.2 數位變焦影像與最適解析度 22 2.4.3 全對焦影像 25 Chapter 3 光場影像超解析演算法 26 3.1 子影像交錯法用於針孔陣列遮罩 26 3.1.1 子影像交錯法 26 3.1.2 以反旋積進行去模糊優化 28 3.1.3 正規化因子與一階微分求解 28 3.1.4 實驗結果 30 3.2 以低解析度子影像還原之影像超解析演算法 31 3.2.1 相機成像矩陣 31 3.2.2 正規化因子 33 3.2.3 低解析度影像取樣與加權 34 3.2.4 梯度下降法 39 3.2.5 演算法流程 40 3.2.6 實驗結果 42 3.3 實驗結果與比較 43 Chapter 4 以低解析度子影像還原之影像超解析硬體架構設計 48 4.1 整體架構 48 4.2 各電路模組 50 4.2.1 控制器 51 4.2.2 深度圖位址計算器與窗格大小計算器 52 4.2.3 光場圖位址計算器 52 4.2.4 暫存器陣列模組 54 4.2.5 靜態記憶體模組 55 4.2.6 超解析影像位址計算器 56 4.3 高斯運算與總變異處理器設計 57 4.4 硬體加速平行化設計 64 4.5 硬體實驗結果 66 4.6 軟硬體運算時間比較 67 Chapter 5 結論與展望 68 5.1 結論 68 5.2 展望 68 附錄A 子影像翻轉偵測 69 A.1 子影像翻轉光場影像 69 A.2 翻轉偵測演算法 70 A.3 數位變焦影像 72 REFERENCE 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 硬體設計 | zh_TW |
| dc.subject | 光場 | zh_TW |
| dc.subject | 針孔陣列遮罩 | zh_TW |
| dc.subject | 超解析度 | zh_TW |
| dc.subject | 光場 | zh_TW |
| dc.subject | 針孔陣列遮罩 | zh_TW |
| dc.subject | 超解析度 | zh_TW |
| dc.subject | 硬體設計 | zh_TW |
| dc.subject | hardware design | en |
| dc.subject | light field | en |
| dc.subject | pinhole mask array | en |
| dc.subject | super resolution | en |
| dc.subject | hardware design | en |
| dc.subject | light field | en |
| dc.subject | pinhole mask array | en |
| dc.subject | super resolution | en |
| dc.title | 考慮光場特性之影像超解析演算法與硬體設計 | zh_TW |
| dc.title | A super resolution algorithm and its hardware design for light field images | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王傑智,簡韶逸,丁建均 | |
| dc.subject.keyword | 光場,針孔陣列遮罩,超解析度,硬體設計, | zh_TW |
| dc.subject.keyword | light field,pinhole mask array,super resolution,hardware design, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
