Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳恩賜(Joshua Oon Soo Goh)
dc.contributor.authorYu-Shiang Suen
dc.contributor.author蘇煜翔zh_TW
dc.date.accessioned2021-06-16T05:09:43Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationAbler, B., Walter, H., Erk, S., Kammerer, H., & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. NeuroImage, 31(2), 790–5. doi:10.1016/j.neuroimage.2006.01.001
Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–35. doi:10.1016/j.neuron.2007.10.038
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. doi:10.1016/j.neuroimage.2007.07.007
Backman, L., Ginovart, N., Dixon, R. a, Wahlin, T. B., Wahlin, a, Halldin, C., & Farde, L. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. The American Journal of Psychiatry, 157(4), 635–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10739428
Backman, L., Karlsson, S., Fischer, H., Karlsson, P., Brehmer, Y., Rieckmann, A., … Nyberg, L. (2011). Dopamine D(1) receptors and age differences in brain activation during working memory. Neurobiology of Aging, 32(10), 1849–56. doi:10.1016/j.neurobiolaging.2009.10.018
Backman, L., Nyberg, L., Lindenberger, U., Li, S.-C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791–807. doi:10.1016/j.neubiorev.2006.06.005
Baltes, P. B., & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychology and Aging, 12(1), 12–21. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9100264
Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–27. doi:10.1016/j.neuroimage.2013.02.063
Buckner, R. (2004). Memory and Executive Function in Aging and AD : Multiple Factors that Cause Decline and Reserve Factors that Compensate. Neuron, 44, 195–208. Retrieved from http://www.sciencedirect.com/science/article/pii/S0896627304005811
Burzynska, A. Z., Garrett, D. D., Preuschhof, C., Nagel, I. E., Li, S.-C., Backman, L., … Lindenberger, U. (2013). A scaffold for efficiency in the human brain. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(43), 17150–9. doi:10.1523/JNEUROSCI.1426-13.2013
Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging Gracefully: Compensatory Brain Activity in High-Performing Older Adults. NeuroImage, 17(3), 1394–1402. doi:10.1006/nimg.2002.1280
Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q., Duzel, E., & Dolan, R. J. (2013). Dopamine restores reward prediction errors in old age. Nature Neuroscience, (March), 5–7. doi:10.1038/nn.3364
Daselaar, S. M., Iyengar, V., Davis, S. W., Eklund, K., Hayes, S. M., & Cabeza, R. E. (2013). Less Wiring, More Firing: Low-Performing Older Adults Compensate for Impaired White Matter with Greater Neural Activity. Cerebral Cortex (New York, N.Y. : 1991). doi:10.1093/cercor/bht289
Davis, S. W., Dennis, N. a, Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex (New York, N.Y. : 1991), 18(5), 1201–9. doi:10.1093/cercor/bhm155
Davis, S. W., Kragel, J. E., Madden, D. J., & Cabeza, R. (2012). The architecture of cross-hemispheric communication in the aging brain: linking behavior to functional and structural connectivity. Cerebral Cortex (New York, N.Y. : 1991), 22(1), 232–42. doi:10.1093/cercor/bhr123
Dennis, N. a, & Cabeza, R. (2011). Age-related dedifferentiation of learning systems: an fMRI study of implicit and explicit learning. Neurobiology of Aging, 32(12), 2318.e17–30. doi:10.1016/j.neurobiolaging.2010.04.004
Dreher, J.-C., Meyer-Lindenberg, A., Kohn, P., & Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15106–11. doi:10.1073/pnas.0802127105
Eppinger, B., Hammerer, D., & Li, S.-C. (2011). Neuromodulation of reward-based learning and decision making in human aging. Annals of the New York Academy of Sciences, 1235, 1–17. doi:10.1111/j.1749-6632.2011.06230.x
Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced Striatal Responses to Reward Prediction Errors in Older Compared with Younger Adults. Journal of Neuroscience, 33(24), 9905–9912. doi:10.1523/JNEUROSCI.2942-12.2013
Erixon-Lindroth, N., Farde, L., Wahlin, T.-B. R., Sovago, J., Halldin, C., & Backman, L. (2005). The role of the striatal dopamine transporter in cognitive aging. Psychiatry Research, 138(1), 1–12. doi:10.1016/j.pscychresns.2004.09.005
Fera, F., Weickert, T. W., Goldberg, T. E., Tessitore, A., Hariri, A., Das, S., … Mattay, V. S. (2005). Neural mechanisms underlying probabilistic category learning in normal aging. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(49), 11340–8. doi:10.1523/JNEUROSCI.2736-05.2005
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science (New York, N.Y.), 299(5614), 1898–902. doi:10.1126/science.1077349
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–8. doi:10.1073/pnas.0504136102
Goh, J. O. S. (2011). Functional Dedifferentiation and Altered Connectivity in Older Adults: Neural Accounts of Cognitive Aging. Aging and Disease, 2(1), 30–48. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3066008&tool=pmcentrez&rendertype=abstract
Goh, J. O., Suzuki, A., & Park, D. C. (2010). Reduced neural selectivity increases fMRI adaptation with age during face discrimination. NeuroImage, 51(1), 336–44. doi:10.1016/j.neuroimage.2010.01.107
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews. Neuroscience, 13(7), 491–505. doi:10.1038/nrn3256
Gunning-Dixon, F. M., & Raz, N. (2003). Neuroanatomical correlates of selected executive functions in middle-aged and older adults: a prospective MRI study. Neuropsychologia, 41(14), 1929–1941. doi:10.1016/S0028-3932(03)00129-5
Head, D., Buckner, R., Shimony, J., LE, W., E, A., TE, C., … AZ, S. (2004). Differential Vulnerability of Anterior White Matter in Nondemented Aging with Minimal Acceleration in Dementia of the Alzheimer Type: Evidence from Diffusion Tensor Imaging. Cerebral Cortex, 14(4), 410–423. doi:10.1093/cercor/bhh003
Kaasinen, V., Vilkman, H., Hietala, J., Nagren, K., Helenius, H., Olsson, H., … Rinne, J. (2000). Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology of Aging, 21(5), 683–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11016537
Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(19), 4806–12. doi:10.1523/JNEUROSCI.0642-05.2005
Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., & Jagust, W. J. (2009). Striatal dopamine and working memory. Cerebral Cortex (New York, N.Y. : 1991), 19(2), 445–54. doi:10.1093/cercor/bhn095
Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science (New York, N.Y.), 300(5620), 812–5. doi:10.1126/science.1082874
Li, S. C., Lindenberger, U., & Sikstrom, S. (2001). Aging cognition: from neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479–486. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11684480
Li, S.-C., Lindenberger, U., & Frensch, P. a. (2000). Unifying cognitive aging: From neuromodulation to representation to cognition. Neurocomputing, 32-33, 879–890. doi:10.1016/S0925-2312(00)00256-3
Lorenz, R. C., Gleich, T., Beck, A., Pohland, L., Raufelder, D., Sommer, W., … Gallinat, J. (2014). Reward anticipation in the adolescent and aging brain. Human Brain Mapping, 00(April), 1–13. doi:10.1002/hbm.22540
Marschner, a, Mell, T., Wartenburger, I., Villringer, a, Reischies, F. M., & Heekeren, H. R. (2005). Reward-based decision-making and aging. Brain Research Bulletin, 67(5), 382–90. doi:10.1016/j.brainresbull.2005.06.010
Mata, R., Josef, A. K., Samanez-Larkin, G. R., & Hertwig, R. (2011). Age differences in risky choice: a meta-analysis. Annals of the New York Academy of Sciences, 1235, 18–29. doi:10.1111/j.1749-6632.2011.06200.x
Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: the positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496–502. doi:10.1016/j.tics.2005.08.005
Miller, E., Shankar, M., Knutson, B., & McClure, S. (2014). Dissociating Motivation from Reward in Human Striatal Activity. Journal of Cognitive Neuroscience, 26(5), 1075–1084. doi:10.1162/jocn
Park, D. C., Polk, T. a, Hebrank, A. C., & Jenkins, L. J. (2010). Age differences in default mode activity on easy and difficult spatial judgment tasks. Frontiers in Human Neuroscience, 3(January), 75. doi:10.3389/neuro.09.075.2009
Park, D. C., Polk, T. a, Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13091–5. doi:10.1073/pnas.0405148101
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60(September), 173–96. doi:10.1146/annurev.psych.59.103006.093656
Payer, D., Marshuetz, C., Sutton, B., Hebrank, A., Welsh, R. C., & Park, D. C. (2006). Decreased neural specialization in old adults on a working memory task. Neuroreport, 17(5), 487–91. doi:10.1097/01.wnr.0000209005.40481.31
Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L.-G., Ingvar, M., & Buckner, R. L. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex (New York, N.Y. : 1991), 16(7), 907–15. doi:10.1093/cercor/bhj036
Raz, N., Gunning, F. M., Head, D., Dupuis, J. H., McQuain, J., Briggs, S. D., … Acker, J. D. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex (New York, N.Y. : 1991), 7(3), 268–82. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9143446
Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. AJNR. American Journal of Neuroradiology, 24(9), 1849–56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14561615
Raz, N., Lindenberger U, Rodrigue KM, Kennedy KM, H. D. et al. (2005). Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cerebral Cortex, 15(11), 1676–1689. doi:10.1093/cercor/bhi044
Resnick, S. M., Pham, D. L., Kraut, M. a, Zonderman, A. B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(8), 3295–301. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12716936
Reuter-Lorenz, P. a, & Lustig, C. (2005). Brain aging: reorganizing discoveries about the aging mind. Current Opinion in Neurobiology, 15(2), 245–51. doi:10.1016/j.conb.2005.03.016
Samanez-Larkin, G. R., Gibbs, S. E. B., Khanna, K., Nielsen, L., Carstensen, L. L., & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10(6), 787–91. doi:10.1038/nn1894
Samanez-Larkin, G. R., Kuhnen, C. M., Yoo, D. J., & Knutson, B. (2010). Variability in nucleus accumbens activity mediates age-related suboptimal financial risk taking. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(4), 1426–34. doi:10.1523/JNEUROSCI.4902-09.2010
Sambataro, F., Reed, J. D., Murty, V. P., Das, S., Tan, H. Y., Callicott, J. H., … Mattay, V. S. (2009). Catechol-O-methyltransferase valine(158)methionine polymorphism modulates brain networks underlying working memory across adulthood. Biological Psychiatry, 66(6), 540–8. doi:10.1016/j.biopsych.2009.04.014
Sanfey, A. G. (2007). Decision Neuroscience: New Directions in Studies of Judgment and Decision Making. Current Directions in Psychological Science, 16(3), 151–155. doi:10.1111/j.1467-8721.2007.00494.x
Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, D., Lang, M., Winz, O. H., … Bauer, A. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(52), 14311–9. doi:10.1523/JNEUROSCI.2058-08.2008
Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30(5), 203–10. doi:10.1016/j.tins.2007.03.007
Sullivan, E. V, & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30(6), 749–61. doi:10.1016/j.neubiorev.2006.06.002
Tobler, P. N., Fiorillo, C. D., & Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science (New York, N.Y.), 307(5715), 1642–5. doi:10.1126/science.1105370
Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. a. (2007). The neural basis of loss aversion in decision-making under risk. Science (New York, N.Y.), 315(5811), 515–8. doi:10.1126/science.1134239
Tymula, A., Rosenberg Belmaker, L. a, Ruderman, L., Glimcher, P. W., & Levy, I. (2013). Like cognitive function, decision making across the life span shows profound age-related changes. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 17143–8. doi:10.1073/pnas.1309909110
Vallesi, A., McIntosh, A. R., & Stuss, D. T. (2011). Overrecruitment in the aging brain as a function of task demands: evidence for a compensatory view. Journal of Cognitive Neuroscience, 23(4), 801–15. doi:10.1162/jocn.2010.21490
Volkow, N. D., Logan, J., Fowler, J. S., Wang, G. J., Gur, R. C., Wong, C., … Pappas, N. (2000). Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. The American Journal of Psychiatry, 157(1), 75–80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10618016
Volkow, N., & Gur, R. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of …, (March), 344–349. Retrieved from http://journals.psychiatryonline.org/article.aspx?articleid=172737
Voss, M. W., Erickson, K. I., Chaddock, L., Prakash, R. S., Colcombe, S. J., Morris, K. S., … Kramer, A. F. (2008). Dedifferentiation in the visual cortex: an fMRI investigation of individual differences in older adults. Brain Research, 1244(0), 121–31. doi:10.1016/j.brainres.2008.09.051
Wang, G., Volkow, N., Logan, J., & Fowler, J. (1995). Evaluation of age-related changes in serotonin 5-HT 2 and dopamine D 2 receptor availability in healthy human subjects. Life Sciences, 56(14), 249–253. Retrieved from http://www.sciencedirect.com/science/article/pii/002432059500066F
Winterer, G., Musso, F., Vucurevic, G., Stoeter, P., Konrad, A., Seker, B., … Weinberger, D. R. (2006). COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. NeuroImage, 32(4), 1722–32. doi:10.1016/j.neuroimage.2006.05.058
Yacubian, J., Glascher, J., Schroeder, K., Sommer, T., Braus, D. F., & Buchel, C. (2006). Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(37), 9530–7. doi:10.1523/JNEUROSCI.2915-06.2006
Yassa, M. a, Lacy, J. W., Stark, S. M., Albert, M. S., Gallagher, M., & Stark, C. E. L. (2011). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 21(9), 968–79. doi:10.1002/hipo.20808
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55863-
dc.description.abstract評價決策的歷程包含腹側紋狀體與前額葉,而這區域也呈現老化相關的多巴胺效用下降。在這個研究中,我們假設這樣的效用下降會造成老年人評價歷程的區辨性下降。同時額葉區域也可能有老化相關的過度活化以作為次級歷程來反應受影響價值歷程。我們以功能性磁振造影執行選擇決策的實驗任務,研究老化所造成的評價選擇歷程的神經差異。四十位年輕人以及四十位老年人參與實驗,在功能性磁振造影的過程中,參與者依造螢幕上的輸贏的機率和價值來決定接受或拒絕螢幕上的選擇,並依其選擇給予結果。行為上,老年人在低機率的情況下有較多的接受次數,也同時有相對上更長的反應時間。功能性磁振造影的全腦分析中,老年人相較於年輕人在雙側伏隔核中對於機率的敏感性較低。同時,左側的背外側前額葉在老年人有過度活化的情況,而且在低機率有更高的反應。後續的功能性聯結分析顯示,老年人在左背外側前額葉與右伏隔核有負的功能聯結,而在年輕人上沒有這樣的功能聯結。因此,老年人較無法有效率地處理決策的價值。我們的研究在老化的決策歷程上發現一個嶄新的神經機制,聯結老化在雙側伏隔核的去區辨性與背外側前額葉的過度活化兩者之間於決策歷程上的關係。zh_TW
dc.description.abstractThe ventral striatum and prefrontal cortex, involved in value prediction during choice processing, show age-related decline in dopamine efficacy. In this study, we postulated that such diminished dopamine efficacy might reduce neural selectivity of value encoding in older adults relative to younger adults. In tandem, there may be age-related overactivation in other frontal areas reflecting secondary processing due to the reduced fidelity of value encoding. We conducted a functional magnetic resonance imaging (fMRI) experiment using a lottery-choice task to investigate age-related neural differences related to choice value processing. 40 younger and 40 older healthy adults saw numbers depicting the probability of winning and losing specified point values in the scanner. For each trial, participants chose to accept or decline the offer and then outcome feedback was provided. Behaviorally, older adults were more likely to accept choices coding low probabilities of winning compared to younger adults, with relatively longer response times in low probability conditions as well. As expected, whole-brain analysis of fMRI data revealed less sensitivity to increasing probability levels in older compared to younger adults in bilateral nucleus accumbens (NAcc). In addition, left dorsal lateral prefrontal cortex (DLPFC) showed overactivation in older relative to younger adults particularly for responses to low probability conditions. Further functional connectivity analysis showed that older adults had negative connectivity between left DLPFC and right NAcc, which was absent in younger adults. Thus, older adults have more difficulty in effectively processing choice values, and specifically overvalue low probability choices. Importantly, our study uncovers a novel mechanistic link between age-related reduction in neural selectivity in the bilateral NAcc and overactivation in the DLPFC during value encoding.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:09:43Z (GMT). No. of bitstreams: 1
ntu-103-R01454015-1.pdf: 51155022 bytes, checksum: 3a084285b5dcadad823edf37b83fefa9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsIntroduction 1
Rational persons make choices that maximize utility 1
Midbrain dopamine neurons represent probability, value, and uncertainty in animal studies 2
Mesocortical pathway encodes expected value in human studies 3
Age-related fronto-striatal structural declines and cognitive changes 4
Age-related reduction of neural selectivity and overactivation of frontal function 5
Dopamine deficit and reduced selectivity in older adult ventral striatum 7
Inconsistent findings on older adults value-based decision processing 8
Rationale and Hypothesis 10
Method 12
Participants 12
fMRI lottery choice task stimuli and procedure 12
Lottery choice task behavioral analysis 14
Brain imaging data acquisition protocol 14
fMRI preprocessing and analysis 15
ROI definition and analysis 18
Functional connectivity preprocessing and analysis 19
Results 21
Behavioral results 21
Reduced neural selectivity in fronto-striatal regions 22
Overactivation in DLPFC 24
Fronto-striatal functional connectivity 24
Relationship of reduced selectivity, functional connectivity, and decision behavior 25
Discussion 27
Processing of probabilistic information is affected by aging 27
Bilateral NAcc reduced selectivity related to dopamine deficit in older adults 28
Overactivated DLPFC is secondary processing to NAcc reduced selectivity 29
Limitations and Implications 30
Reference 33
dc.language.isoen
dc.title老化於選擇評價歷程的紋狀體去區辨性與額葉過度活化zh_TW
dc.titleAge Reduces Striatal Selectivity and Increases Frontal Activation during Choice Value Processingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳仕煒(Shih-Wei Wu),吳建德(Chien-Te Wu),黃植懋(Chih-Mao Huang)
dc.subject.keyword老化,決策,功能性磁振造影,去區辨性,過度活化,zh_TW
dc.subject.keywordAging,Decision-making,fMRI,reduced selectivity,increased activity,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
49.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved