請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55862完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊汶博(Wen-Po Chuang) | |
| dc.contributor.author | Yun-Hung Kuang | en |
| dc.contributor.author | 鄺芸弘 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:09:42Z | - |
| dc.date.available | 2025-07-28 | |
| dc.date.copyright | 2020-08-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-28 | |
| dc.identifier.citation | Abdullah, A. B., Ito, S., and Adhana, K. (2006). Estimate of rice consumption in Asian countries and the world towards 2050. In Proceedings for Workshop and Conference on Rice in the World at Stake, pp. 28-43.
Aljbory, Z., and Chen, M. S. (2018). Indirect plant defense against insect herbivores: a review. Insect Science 25, 2-23. Asshoff, R., and Hättenschwiler, S. (2005). Growth and reproduction of the alpine grasshopper Miramella alpina feeding on CO2 enriched dwarf shrubs at treeline. Oecologia 142, 191-201. Auclair, J., Baldos, E., and Heinrichs, E. (1982). Biochemical evidence for the feeding sites of the leafhopper Nephotettix virescens within susceptible and resistant rice plants. International Journal of Tropical Insect Science 3, 29-34. Barbehenn, R. V., Chen, Z., Karowe, D. N., and Spickard, A. (2004). C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Global Change Biology 10, 1565-1575. Bowes, G., Vu, J. C., Hussain, M. W., Pennanen, A. H., and Allen, L. H. (1996). An overview of how rubisco and carbohydrate metabolism may be regulated at elevated atmospheric CO2 and temperature. Agricultural and Food Science 5, 261-270. Chen, H., Stout, M. J., Qian, Q., and Chen, F. (2012). Genetic, molecular and genomic basis of rice defense against insects. Critical Reviews in Plant Sciences 31, 74-91. Chen, M. S. (2008). Inducible direct plant defense against insect herbivores: a review. Insect Science 15, 101-114. Cheng, X., Zhu, L., and He, G. (2013a). Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant 6, 621-634. Cheng, X., Wu, Y., Guo, J., Du, B., Chen, R., Zhu, L., and He, G. (2013b). A rice lectin receptor‐like kinase that is involved in innate immune responses also contributes to seed germination. The Plant Journal 76, 687-698. Dai, Y., Wang, M.-F., Jiang, S.-L., Zhang, Y.-F., Parajulee, M. N., and Chen, F.-J. (2018). Host-selection behavior and physiological mechanisms of the cotton aphid, Aphis gossypii, in response to rising atmospheric carbon dioxide levels. Journal of Insect Physiology 109, 149-156. Das, Y. T. (1976). Some factors of resistance to Chilo suppressalis in rice varieties. Entomologia Experimentalis et Applicata 20, 131-134. Douglas, A. (2006). Phloem-sap feeding by animals: problems and solutions. Journal of Experimental Botany 57, 747-754. Du, B., Chen, R., Guo, J., and He, G. (2020). Current understanding of the genomic, genetic, and molecular control of insect resistance in rice. Molecular Breeding 40, 24. Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., He, R., Zhu, L., Chen, R., and Han, B. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences 106, 22163-22168. Duxbury, Z., Ma, Y., Furzer, O. J., Huh, S. U., Cevik, V., Jones, J. D., and Sarris, P. F. (2016). Pathogen perception by NLRs in plants and animals: Parallel worlds. BioEssays 38, 769-781. Edwards, O. R. (2001). Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomologia Experimentalis et Applicata 100, 21-30. Feuer, R. (1976). Biotype 2 brown planthopper in the Philippines. International Rice Research Notes 1, 15. Gouhier-Darimont, C., Stahl, E., Glauser, G., and Reymond, P. (2019). The Arabidopsis lectin receptor kinase LecRK-I.8 is involved in insect egg perception. Frontiers in Plant Science 10, 623. Goverde, M., and Erhardt, A. (2003). Effects of elevated CO2 on development and larval food‐plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Global Change Biology 9, 74-83. Guo, J.-Y., Wu, G., and Wan, F.-H. (2010). Activities of digestive and detoxification enzymes in multiple generations of beet armyworm, Spodoptera exigua (Hübner), in response to transgenic Bt cotton. Journal of Pest Science 83, 453-460. Guo, J., Xu, C., Wu, D., Zhao, Y., Qiu, Y., Wang, X., Ouyang, Y., Cai, B., Liu, X., and Jing, S. (2018). Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nature Genetics 50, 297-306. Hao, P., Liu, C., Wang, Y., Chen, R., Tang, M., Du, B., Zhu, L., and He, G. (2008). Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiology 146, 1810-1820. Harborne, J. B. (2013). The flavonoids: advances in research since 1980. (Springer). Hemingway, J., and Karunaratne, S. (1998). Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology 12, 1-12. Herdt, R. W. (1991). Research priorities for rice biotechnology. Rice Biotechnology 6, 19-54. Hu, J., Li, X., Wu, C., Yang, C., Hua, H., Gao, G., Xiao, J., and He, Y. (2012). Pyramiding and evaluation of the brown planthopper resistance genes Bph14 and Bph15 in hybrid rice. Molecular Breeding 29, 61-69. Huang, H. J., Zhang, C. X., and Hong, X. Y. (2019). How does saliva function in planthopper–host interactions? Archives of Insect Biochemistry and Physiology 100, e21537. Huang, N., Angeles, E., Domingo, J., Magpantay, G., Singh, S., Zhang, G., Kumaravadivel, N., Bennett, J., and Khush, G. (1997). Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theoretical and Applied Genetics 95, 313-320. Hughes, L., and Bazzaz, F. A. (2001). Effects of elevated CO2 on five plant‐aphid interactions. Entomologia Experimentalis et Applicata 99, 87-96. Jena, K. K., Hechanova, S. L., Verdeprado, H., Prahalada, G., and Kim, S.-R. (2017). Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum, and molecular analysis. Theoretical and Applied Genetics 130, 2345-2360. Ji, H., Kim, S.-R., Kim, Y.-H., Suh, J.-P., Park, H.-M., Sreenivasulu, N., Misra, G., Kim, S.-M., Hechanova, S. L., and Kim, H. (2016). Map-based cloning and characterization of the BPH18 gene from wild rice conferring resistance to brown planthopper (BPH) insect pest. Scientific Reports 6, 1-14. Johns, C. V., and Hughes, L. (2002). Interactive effects of elevated CO2 and temperature on the leaf‐miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae). Global Change Biology 8, 142-152. Jones, P., Gacesa, P., and Butlin, R. (1996). Systematics of brown planthopper and related species using nuclear and mitochondrial DNA. The Ecology of Agricultural Pests 53, 133-148. Jung, J. K., and Im, D. J. (2005). Feeding inhibition of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) on a resistant rice variety. Journal of Asia-Pacific Entomology 8, 301-308. Karley, A., Douglas, A., and Parker, W. (2002). Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. Journal of Experimental Biology 205, 3009-3018. Kimmins, F. (1989). Electrical penetration graphs from Nilaparvata lugens on resistant and susceptible rice varieties. Entomologia Experimentalis et Applicata 50, 69-79. Klingler, J., Creasy, R., Gao, L., Nair, R. M., Calix, A. S., Jacob, H. S., Edwards, O. R., and Singh, K. B. (2005). Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiology 137, 1445-1455. Kogan, M., and Ortman, E. F. (1978). Antixenosis–a new term proposed to define Painter's “nonpreference” modality of resistance. Bulletin of the Ecological Society of America 24, 175-176. Krishnaiah, N., Prasad, A. R., Rao, C. R., Pasalu, I., Lakshmi, V. J., Narayana, V. L., and Lingaiah, T. (2005). Effect of constant and variable temperatures on biological parameters of rice brown planthopper, Nilaparvata lugens (Stal). Indian Journal of Plant Protection 33, 181. Lehane, M., Blakemore, D., Williams, S., and Moffatt, M. (1995). Regulation of digestive enzyme levels in insects. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 110, 285-289. Li, Y., Huang, Y.-F., Huang, S.-H., Kuang, Y.-H., Tung, C.-W., Liao, C.-T., and Chuang, W.-P. (2019). Genomic and phenotypic evaluation of rice susceptible check TN1 collected in Taiwan. Botanical Studies 60, 1-7. Liu, F., Lou, Y., and Cheng, J. (2002). Volatiles-mediated intra- and interspecific interactions of the rice brown planthopper, Nilaparvata lugens, and the white-backed planthopper, Sogatella furcifera. Chinese Journal of Rice Science 16, 162-166. Liu, Y., Wu, H., Chen, H., Liu, Y., He, J., Kang, H., Sun, Z., Pan, G., Wang, Q., and Hu, J. (2015). A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology 33, 301. Lu, Z.-X., Heong, K.-L., Yu, X.-P., and Hu, C. (2004). Effects of plant nitrogen on ecological fitness of the brown planthopper, Nilaparvata lugens Stal. in rice. Journal of Asia-Pacific Entomology 7, 97-104. Manikandan, N., Kennedy, J., and Geethalakshmi, V. (2015). Effect of temperature on life history parameters of brown planthopper (Nilaparvata lugens Stal). African Journal of Agricultural Research 10, 3678-3685. Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and Ceulemans, R. (1999). Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell Environment 22, 683-714. Owensby, C. E., Ham, J. M., Knapp, A. K., and Auen, L. M. (1999). Biomass production and species composition change in a tallgrass prairie ecosystem after long‐term exposure to elevated atmospheric CO2. Global Change Biology 5, 497-506. Painter, R. H. (1951). Insect resistance in crop plants (New York: MacMillan), pp. 481. Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., and Tammaru, T. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579-583. Pathak, M., Cheng, C., and Fortuno, M. (1969). Resistance to Nephotettix impicticeps and Nilaparvata lugens in varieties of rice. Nature 223, 502-504. Pathak, P., and Heinrichs, E. (1982a). Selection of biotype populations 2 and 3 of Nilaparvata lugens by exposure to resistant rice varieties. Environmental Entomology 11, 85-90. Pathak, P., and Heinrichs, E. (1982b). Bromocresol green indicator for measuring feeding activity of Nilaparvata lugens on rice varieties. Philippine Entomologist 5, 197-198. Piyaphongkul, J. (2013). Effects of thermal stress on the brown planthopper Nilaparvata lugens (Stal) (PhD Thesis. University of Birmingham). Prasannakumar, N., Chander, S., and Pal, M. (2012). Assessment of impact of climate change with reference to elevated CO2 on rice brown planthopper, Nilaparvata lugens (Stal.) and crop yield. Current Science 103, 1201-1205. Prasannath, K. (2017). Plant defense-related enzymes against pathogens: a review. AGRIEAST: Journal of Agricultural Sciences 11, 38-48. Pritchard, S. G., Rogers, H. H., Prior, S. A., and Peterson, C. M. (1999). Elevated CO2 and plant structure: a review. Global Change Biology 5, 807-837. Qiu, Y., Guo, J., Jing, S., Zhu, L., and He, G. (2012). Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6. Theoretical and Applied Genetics 124, 485-494. R-Core-Team. (2013). R: A language and environment for statistical computing (Vienna, Austria). Rani, P. U., and Jyothsna, Y. (2010). Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiologiae Plantarum 32, 695-701. Rashid, M. M., Jahan, M., and Islam, K. S. (2017). Effects of nitrogen, phosphorous and potassium on host-choice behavior of brown planthopper, Nilaparvata lugens (Stål) on rice cultivar. Journal of Insect Behavior 30, 1-15. Ren, J., Gao, F., Wu, X., Lu, X., Zeng, L., Lv, J., Su, X., Luo, H., and Ren, G. (2016). Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Scientific Reports 6, 37645. Ryoichi, I., and Kaneda, C. (1982). Genetic studies on brown planthopper resistance of rice in Japan. The Japan Agricultural Research Quarterly 16, 1-5. Seneweera, S. P., Ghannoum, O., Conroy, J. P., Ishimaru, K., Okada, M., Lieffering, M., Kim, H. Y., and Kobayashi, K. (2002). Changes in source–sink relations during development influence photosynthetic acclimation of rice to free air CO2 enrichment (FACE). Functional Plant Biology 29, 947-955. Sharma, P. N., Torii, A., Takumi, S., Mori, N., and Nakamura, C. (2004). Marker‐assisted pyramiding of brown planthopper (Nilaparvata lugens Stål) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140, 61-69. Shi, B., Huang, J., Hu, C., and Hou, M. (2014). Interactive effects of elevated CO2 and temperature on rice planthopper, Nilaparvata lugens. Journal of Integrative Agriculture 13, 1520-1529. Shigematsu, Y., Murofushi, N., Ito, K., Kaneda, C., Kawabe, S., and Takahashi, N. (1982). Sterols and asparagine in the rice plant, endogenous factors related to resistance against the brown planthopper (Nilaparvata lugens). Agricultural and Biological Chemistry 46, 2877-2879. Sogawa, K. (1973). Feeding of the rice plant-and leafhoppers. Plant Protect 6, 31-43. Sogawa, K. (1982). The rice brown planthopper: feeding physiology and host plant interactions. Annual Review of Entomology 27, 49-73. Sogawa, K., and Pathak, M. (1970). Mechanisms of brown planthopper resistance in Mudgo variety of rice (Hemiptera: Delphacidae). Applied Entomology and Zoology 5, 145-158. Solomon, S. (2007). IPCC (2007): Climate change the physical science basis. AGUFM 2007, U43D-01. Srinivas, M., Devi, R. S., and Jagadeeshwar, N. R. G. V. R. (2020). Interactive effect of temperature and CO2 on resistance of rice genotypes to brown planthopper, Nilaparvata lugens (Stal.). Journal of Entomology and Zoology Studies 8, 600-602. Streck, N. A. (2005). Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural 35, 730-740. Sun, Z., Shi, J. H., Fan, T., Wang, C., Liu, L., Jin, H., Foba, C. N., and Wang, M. Q. (2020). The control of the brown planthopper by the rice Bph14 gene is affected by nitrogen. Pharmazie in unserer Zeit 0, https://doi.org/10.1002/ps.5911. Tamura, Y., Hattori, M., Yoshioka, H., Yoshioka, M., Takahashi, A., Wu, J., Sentoku, N., and Yasui, H. (2014). Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific Reports 4, 1-8. Thayumanavan, B., Velusamy, R., and Sadasivam, S. (1990). Phenolic compounds, reducing sugars, and free amino acids in rice leaves of varieties resistant to rice thrips. International Rice Research Newsletter 11, 14-15. Vailla, S., Muthusamy, S., Konijeti, C., Shanker, C., and Vattikuti, J. L. (2019). Effects of elevated carbon dioxide and temperature on rice brown planthopper, Nilaparvata lugens (Stål) populations in India. Current Science 116, 988. Veeranna, D., Subhash, C., and Sagur, D. (2018). Impact of elevated carbon dioxide on the protective enzymes in brown planthopper (Nilaparvata lugens) and infested rice (Oryza sativa) plants. Indian Journal of Agricultural Sciences 88, 1366-1370. Veeranna Daravath, S. C., and Sagar, D. (2018). Impact of elevated carbon dioxide on the protective enzymes in brown planthopper (Nilaparvata lugens) and infested rice (Oryza sativa) plants. Indian Journal of Agricultural Sciences 88, 1366-1370. Velusamy, R., and Heinrichs, E. (1986). Electronic monitoring of feeding behavior of Nilaparvata lagens (Homoptera: Delphacidae) on resistant and susceptible rice cultivars. Environmental Entomology 15, 678-682. Walling, L. L. (2008). Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiology 146, 859-866. Wang, B.-J., Xu, H.-X., Zheng, X.-S., Qiang, F., and Lu, Z.-X. (2010). High temperature modifies resistance performances of rice varieties to brown planthopper, Nilaparvata lugens (Stål). Rice Science 17, 334-338. Wang, Y., Tang, M., Hao, P., Yang, Z., Zhu, L., and He, G. (2008). Penetration into rice tissues by brown planthopper and fine structure of the salivary sheaths. Entomologia Experimentalis et Applicata 129, 295-307. Wang, Y., Cao, L., Zhang, Y., Cao, C., Liu, F., Huang, F., Qiu, Y., Li, R., and Luo, X. (2015). Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. Journal of Experimental Biology 66, 6035-6045. Watson, R. T., Albritton, D. L., and Dokken, D. J. (2001). Climate change 2001: synthesis report. (Cambridge University Press Cambridge, UK). Williams, M., Robertson, E., Leech, R., and Harwood, J. (1998). The effects of elevated atmospheric CO2 on lipid metabolism in leaves from mature wheat (Triticum aestivum cv. Hereward) plants. Plant, Cell Environment 21, 927-936. Woodhead, S., and Padgham, D. (1988). The effect of plant surface characteristics on resistance of rice to the brown planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata 47, 15-22. Xiao, Y., Wang, Q., Erb, M., Turlings, T. C., Ge, L., Hu, L., Li, J., Han, X., Zhang, T., and Lu, J. (2012). Specific herbivore‐induced volatiles defend plants and determine insect community composition in the field. Ecology Letters 15, 1130-1139. Xue, J., Zhou, X., Zhang, C.-X., Yu, L.-L., Fan, H.-W., Wang, Z., Xu, H.-J., Xi, Y., Zhu, Z.-R., and Zhou, W.-W. (2014). Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology 15, 1-20. Yang, L., Li, R., Li, Y., Huang, F., Chen, Y., Huang, S. S., Huang, L., Liu, C., Ma, Z., and Huang, D. (2012). Genetic mapping of bph20 (t) and bph21 (t) loci conferring brown planthopper resistance to Nilaparvata lugens Stål in rice (Oryza sativa L.). Euphytica 183, 161-171. Ye, M., Kuai, P., Hu, L., Ye, M., Sun, H., Erb, M., and Lou, Y. (2020). Suppression of a leucine‐rich repeat receptor‐like kinase enhances host plant resistance to a specialist herbivore. Plant, Cell Environment, https://doi.org/10.1111/pce.13834. Yoshida, S. (1976). Routine procedure for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice, 61-66. Yoshihara, T., Sogawa, K., Pathak, M. D., Juliano, B. O., and Sakamura, S. (1980). Oxalic-Acid as a sucking inhibitor of the brown planthopper in rice (Delphacidae, Homoptera). Entomologia Experimentalis et Applicata 27, 149-155. Zeng, Y., Huang, W., Su, L., Wu, G., Zhuang, J., Zhao, W., Hua, H., Li, J., Xiao, N., and Xiong, Y. (2012). Effects of elevated CO2 on the nutrient compositions and enzymes activities of Nilaparvata lugens nymphs fed on rice plants. Science China Life Sciences 55, 920-926. Zhang, T., Huang, Y., and Yang, X. (2013). Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Change Biology 19, 563-570. Zhao, Y., Huang, J., Wang, Z., Jing, S., Wang, Y., Ouyang, Y., Cai, B., Xin, X.-F., Liu, X., and Zhang, C. (2016). Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proceedings of the National Academy of Sciences 113, 12850-12855. 江志峰,李艷琪,黃維廷 and郭鴻裕 (2019) 作物土壤管理與施肥技術-水稻篇.農業試 驗所特刊 223, 48-54。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55862 | - |
| dc.description.abstract | 褐飛蝨(Nilaparvata lugens Stål)為亞洲水稻主要害蟲之一,當族群過多時會影響水稻產量。褐飛蝨為專食性害蟲,藉由刺吸水稻莖桿吸食汁液獲得生長所需養分,主要宿主為水稻和野生稻。透過栽培抗褐飛蝨水稻品種,減緩褐飛蝨族群成長速度以及減少產量損失。前人研究指出隨環境溫度提升部份抗蟲基因會失去抗性。聯合國政府間氣候變遷專門委員會(IPCC)預測未來環境的大氣二氧化碳濃度將會增加也因而導致大氣平均氣溫上升。本研究欲了解氣候變遷是否會導致水稻抗褐飛蝨基因失去抗性。透過種植IR24 NILs (near-isogenic lines)於模擬未來環境中,對多個抗BPH基因進行評估。本研究參照IPCC預測建構模擬環境,環境設定分別為(1) Ambient:模擬目前環境氣溫30℃/25℃ (日/夜)、大氣CO2 濃度500 ppm;(2)2050:模擬2050年環境氣溫32℃/27℃ (日/夜)、大氣CO2濃度600 ppm;(3) 2100:模擬2100年環境氣溫35℃/30℃ (日/夜)、大氣CO2濃度1000 ppm。透過水稻秧苗期抗性檢定,發現NILs中NIL-BPH17、NIL-BPH18+32、NIL-BPH9+32抗蟲能力不受環境影響,而NIL-bph4、NIL-BPH9、NIL-BPH10、NIL-BPH21在高溫高二氧化碳的環境下減弱其抗蟲效力。此外,分別針對NIL-BPH17和NIL-BPH20進行抗生性和抗棲性實驗。結果顯示NIL-BPH17在高溫高二氧化碳的環境下仍可有母蟲吸食水稻韌皮部的抑制效力,並維持對褐飛蝨若蟲的忌避效果。但母蟲產卵率、若蟲存活率、若蟲族群相對生長速率等實驗結果則顯示會隨環境影響而失去抗性。NIL-BPH20對褐飛蝨母蟲產卵率和若蟲族群生長速率無抑制作用,而在Ambient環境中可抑制母蟲吸食水稻韌皮部,2050環境中可抑制若蟲存活率,但隨環境影響將沒有抗性。此外,NIL-BPH20於Ambient環境中對褐飛蝨無忌避效果,但於2050和2100環境中則有忌避效果。根據本研究的實驗結果證明氣候變遷會影響抗蟲基因的抗蟲能力。本研究可提供給育種家有關於環境對於抗蟲基因的影響。 | zh_TW |
| dc.description.abstract | The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is one of the most serious pests on rice in Asia. The outbreak of BPH would cause the yield loss of rice. BPH is the specialist which feeds on the leaf sheath to obtain nutrients. Its host range is limited on rice and its relatives (i.e. wild rice). For the pest management, planting BPH-resistant variety could control the BPH population and further low the yield loss. Previous studies showed that resistance ability of the insect-resistant gene would get loss due to the temperature increasing. Intergovernmental Panel on Climate Change (IPCC) predicted that atmosphere temperature and CO2 concentration will increase in the future. In this study, we would like to know whether the BPH-resistant genes would be affected by the climate change. Thus, a series of IR24 near-isogenic lines (NILs) planting in the corresponding environments were used to evaluate their performance. Based on IPCC prediction, three environments were set up as follows: Ambient (ambient environment): 30℃/25℃ (day temperature /night temperature), CO2 concentration of 500 ppm; 2050 (the prediction environment in the year 2050): 32℃/27℃ (day temperature /night temperature), CO2 concentration 600 ppm; 2100 (the prediction environment in the year 2100): 35℃/30℃ (day temperature /night temperature), CO2 concentration 1000 ppm. In the standard seedbox screening test (SSST), we found that NIL-BPH17, NIL-BPH18+32, NIL-BPH9+32 showed stable resistance towards the environments. However, NIL-bph4, NIL-BPH9, NIL-BPH10, NIL-BPH21 were lower their resistant ability towards the environments. Two NILs (NIL-BPH17 and NIL-BPH20) were chosen for the antibiosis and antixenosis studies. In NIL-BPH17, the inhibiting ability of BPH feeding on the phloem and non-preference effect would not be affected by the environments. However, the inhibition abilities on female fecundity, nymph survival rate and nymph population growth rate would lose the effect due to the climate change. In NIL-BPH20, it has no inhibition effect on BPH female fecundity and nymph population growth rate. Under ambient environment, NIL-BPH20 has the inhibition ability of BPH feeding on the phloem. In 2050, NIL-BPH20 would inhibit the nymph survival rate. However, these inhibitions would not invalid due to the climate change. In addition, NIL-BPH20 did not have any inhibition effect on the BPH choice test in the Ambient condition. But in 2050 and 2100, few nymphs would choose the plants of NIL-BPH20. Based on our study, the environmental change would affect the resistant ability of the insect-resistant genes. These results would provide plant breeders the information about the insect-resistant genes responding to the environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:09:42Z (GMT). No. of bitstreams: 1 U0001-2807202018095500.pdf: 3822841 bytes, checksum: 150ad6e77014bb0c08f61aeabeeb1d90 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 表目錄 vii 圖目錄 viii 附圖目錄 ix 前言 1 1. 褐飛蝨刺吸危害與水稻反應 1 2. 植物抗蟲相關機制 2 3. 褐飛蝨蟲害管理 3 4. 水稻中褐飛蝨抗蟲基因與應用 4 5. 氣候變遷改變水稻與褐飛蝨之交互作用 6 6. 研究目標 7 材料與方法 9 1.實驗材料介紹及培養方法 9 1.1 植物材料與品種 9 1.2 NILs之育成 9 1.3 水稻種子消毒及催芽 10 1.4 生長箱環境設置 10 2. 褐飛蝨飼養及管理 10 3. 生物檢定 11 3.1褐飛蝨抗性秧苗期檢定法 (Standard Seedbox Screening Test, SSST) 11 3.2褐飛蝨蜜露檢定 11 3.3 褐飛蝨族群相對生長速率檢定 12 3.4褐飛蝨存活率檢定 12 3.5褐飛蝨選擇性檢定 13 3.6褐飛蝨產卵率檢定 13 4. 統計分析 13 結果 15 1. 氣候變遷下IR24 NILs秧苗期之褐飛蝨抗性檢定 15 2. 水稻BPH17、BPH20基因於氣候變遷下對褐飛蝨抗生性之評估 15 2.1母蟲蜜露檢定 15 2.2若蟲族群生長速率 16 2.3若蟲存活率檢定 16 3. 水稻BPH17、BPH20基因於氣候變遷下對褐飛蝨抗棲性之評估 17 3.1若蟲宿主選擇性試驗 17 3.2母蟲產卵率及卵孵化率 17 討論 19 1. 透過SSST評估褐飛蝨抗性基因於氣候變遷下抗蟲能力之變化 19 2. 氣候變遷下水稻抗蟲基因BPH17及BPH20抗生性之變化 21 3. 氣候變遷下水稻抗蟲基因BPH17及BPH20抗棲性之變化 26 結論 29 參考文獻 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高溫高二氧化碳 | zh_TW |
| dc.subject | 抗蟲檢定 | zh_TW |
| dc.subject | 抗棲性 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 抗生性 | zh_TW |
| dc.subject | 褐飛蝨 | zh_TW |
| dc.subject | antixenosis | en |
| dc.subject | high temperature high CO2 | en |
| dc.subject | Climate change | en |
| dc.subject | brown planthopper | en |
| dc.subject | antibiosis | en |
| dc.subject | rice resistant screening | en |
| dc.title | 評估氣候變遷下褐飛蝨抗蟲基因BPH17以及BPH20近同源系之抗性能力 | zh_TW |
| dc.title | Evaluate the insect resistance ability of NIL-BPH17 and NIL-BPH20 under climate change | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡欣甫(Shin-Fu Tsai) | |
| dc.contributor.oralexamcommittee | 李長沛(Charng-Pei Li),黃守宏(Shou-Horng Huang) | |
| dc.subject.keyword | 氣候變遷,高溫高二氧化碳,褐飛蝨,抗生性,抗棲性,抗蟲檢定, | zh_TW |
| dc.subject.keyword | Climate change,high temperature high CO2,brown planthopper,antibiosis,antixenosis,rice resistant screening, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU202001991 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202018095500.pdf 未授權公開取用 | 3.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
