請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55837
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉致為(Cheewee Liu) | |
dc.contributor.author | Qing-Qi Chen | en |
dc.contributor.author | 陳慶麒 | zh_TW |
dc.date.accessioned | 2021-06-16T05:09:16Z | - |
dc.date.available | 2019-09-02 | |
dc.date.copyright | 2014-09-02 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-19 | |
dc.identifier.citation | [1] Craig Winneker, Global Market Outlook for Photovoltaics until 2016, European Photovoltaic Industry Association (EPIA), Brussels, Belgium, May 2012.
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 41),” Progress in Photovoltaics: Research and Applications, Volume 21, Issue 1, pages 1–11, January 2013. [3] M. J. Kerr and A. Cuevas, “Very low bulk and surface recombination in oxidized silicon wafers,” Semicond. Sci. Technol., vol. 17, pp. 35–38,2002. [4] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers,S. De Wolf, and G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3438–3443, 2006. [5] G. Dingemans, R. Seguin, P. Engelhart, M. C. M. van den Sanden, and W. M. M. Kessels, “Silicon surface passivation by ultrathin Al2O3 films synthesized by thermal and plasma atomic layer deposition,” Phys. Status Solidi RRL, vol. 4, pp. 10–12, 2010. [6] A. Richter, J. Benick, M. Hermle, and S. W. Glunz, “Excellent silicon surface passivation with 5A thin ALD Al2O3 layers: Influence of different thermal post-deposition treatments,” Phys. Status Solidi RRL, vol. 5/6, pp. 202–204, 2011. [7] D.L. Staebler and C.R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett. 31, 292–294 (1977). [8] Xiaochen Sun, “Ge on Si Light-Emitter Materials and Devices for Silicon Photonics,” ph.D. dissertation, Massachusetts Institute of Technology, USA, 2009. [9] T.-H Cheng, P.-S. Kuo, C.-Y. Ko, C.-Y. Chen, K.-L Peng, G.-L. Luo, C.W. Liu, and H.-H Tseng, “Competitiveness between direct and indirect radiative transition of Ge,” Appl. Phys. Letter., Vol. 96, 091105, 2010. [10] Khaled Salah Mohamed,“Work Around Moore’s Law: Current and Next Generation Technologies” Applied Mechanics and Materials Vols. 110-116 (2012) pp 3278-3283 [11] N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, VLSI Technology, 2009 Digest of Technical Papers 2009 Symposium on T4B (4) (2009), pp. 80–81. [12] C. H. Lee, T. Nishimura, N. Saido, K. Nagashio, K. Kita, and A. Toriumi, International Electron Devices Meeting (IEDM), Technical Digest, 19.2.1 (2003). [13] C.-Y. Peng, F. Yuan, C.-Y. Yu, P.-S. Kuo, M. H. Lee, See, S. Maikap, C.-H. Hsu, and C. W. Liu, “Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si,” Appl. Phys Lett, vol. 90, 012114, 2007. [14] Y. -C. Fu, W. Hsu, Y. -T. Chen, H. -S. Lan, C. -H. Lee, H. -C. Chang, H. -Y. Lee, G.-L. Luo, C. -H. Chien, C. W. Liu, C. Hu, and F. -L. Yang, International Electron Device Meeting (IEDM), San Francisco, Dec. 2010 [15] Mickael Brun, Pierre Labeye, Gilles Grand, Jean-Michel Hartmann, Fahem , Boulila, Mathieu Carras, and Sergio Nicoletti, Optic Express, Vol. 22, Issue 1, pp. 508-518 (2014) [16] D. Crippa et al. (Eds.), Silicon Epitaxy, Academic Press, San Diego CA (2001) [17] Cheng-Han Lee, “SiGe Epitaxial Growth by Ultra-high Vacuum Chemical Vapor Deposition and the Advanced Device Applications,” ph.D. dissertation, National Taiwan University, 2011. [18] M. H. Liao, T.-H. Cheng, and C. W. Liu, Appl. Phys .Lett, 89, 261913 (2006). [19] X. Sun, J. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett., 95, 011911 (2009). [20] W. Hu , B. Cheng, C. Xue, H. Xue, S. Su, A. Bai, L. Luo, Y. Yu, and Q. Wang, Appl.Phys. Lett, 95, 092102 (2009). [21] M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Nature(London), 412, 805 (2001). [22] Peter M. Martin, Handbook of Deposition Technologies for Films and Coatings (2010). [23] S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications, Springer Series in Material Science Vol. 85 (Springer, Heidelberg, 2005). [24] B. D. Cullity, Elements of X-Ray Diffraction, Second Edition (1978) [25] M. Hierlemann et al., J. Electrochem. Soc, 142, 259 (1995). [26] X. Xiao, C. W. Liu, J. C. Sturm, L. C. Lenchyshyn, M. L. W. Thewalt, R. B. Gregory, and P. Fejes, Appl. Phys. Lett., 60, 2135 (1992). [27] Hull, R. & Bean, J. C. (1992). Crit. Rev. Solid State Mater. Sci. 17, 507-546. [28] B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 91, 112107 (2007). [29] S.W. Glunz, Advances in OptoElectronics, vol. 2007, in: Special Issue “Recent Advances in Solar Cells”, edited by A.G. Aberle. [30] A. G. Aberle, Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis, The University of New South Wales, Sydney, Australia, 1999. [31] J. Zhao, A. Wang and M. A. Green. Prog. Photovoltaics 7, 471 (1999). [32] E. Maruyama, et al., in: Proceedings of WCPEC-4, Hawaii, 2006, pp. 1455–1460. [33] H. Fujiwara and M. Kondo, Appl. Phys. Lett. 90, 013503 (2007). [34] P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, Appl. Phys. Lett., 95, 151502 (2009). [35] B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden and W. M. M. Kessels, J. Appl. Phys. 104, 044903 (2008). [36] Liao B, Stangl R, Mueller T, Lin F, Bhatia C S and Hoex B 2013 J. Appl. Phys. 113 024509 [37] Shubham Duttagupta, Fa-Jun Ma, Serena Fen Lin, Thomas Mueller, Armin G. Aberle, and Bram Hoex, IEEE Journal of Photovoltaics, Vol. 3, No.4, October 2013. [38] Antoine Descoeudres, Zachary C. Holman, Loris Barraud, Sophie Morel, Stefaan De Wolf, and Christophe Ballif, IEEE Journal of Photovoltaics, Vol. 3, No.1, January 2013. [39] M. Beye, M.E. Faye, A. Ndiaye, F. Ndiaye and A. Seidou Maiga , Research Journal of Applied Sciences, Engineering and Technology 6(3): 412-416, 2013. [40] Dongchul Suh, Duk-Yongn Choi and Klaus J. Weber, J. Appl. Phys. 114, 154107 (2013) [41] Jisook Oh, Jihyun Myoung, Jin Sung Bae, and Sangwoo Lim, Journal of The Electrochemical Society, 158 (4) D217-D222 (2011) [42] Saif, M. T. A., S. Zhaang, M. A. Haque, and K. J. Hsia, “Effect of Native Oxide on the Elastic Response of Nanoscale AL Films,” Acta Materialia, 50:11, 2779-2786, 2002. [43] S. Rein, Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications, Springer Series in Material Science Vol. 85 (Springer, Heidelberg, 2005). [44] Wei Shuo Ho, “Si/Ge photodetectors and solar cells,” ph.D. dissertation, National Taiwan University, 2012. [45] S. W. Glunz, D. Biro, S. Rein, and W. Warta, “Field-effect passivation of the SiOSi interface,” J. Appl. Phys. 86, 683 (1999). [46] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987. [47] H.S. Zhang and K. Komvopoulos, Rev. Sci. Instrum. 79 (2008), p. 073905. [48] Tzu-Yu Chang, “Study of the Enhancement of Light Emission from Germanium by Nitric Acid ” Thesis of National Taiwan University, 2012. [49] Dongchul Suh and Klaus Weber, physica status solidi (RRL) - Rapid Research Letters, Volume 8, Issue 1, pages 40–43, January 2014 [50] Dongchul Suh, Duk-Yong Choi, and Klaus J. Weber, Journal of Applied Physics, 114, 154107 (2013) [51] L. M. Terman, “An investigation of surface states at a silicon/ silicon oxide interface employing metal-oxide-silicon diode,” Solid State Electron., vol.5, p.285, 1962. [52] Hudelson, George David Stephen, “High temperature investigations of crystalline silicon solar cell materials,” ph.D. dissertation, Massachusetts Institute of Technology, USA, 2009. [53] J. I. Pankove and M. L. Tarng, “Amorphous silicon as a passivant for crystalline silicon,” Appl. Phys. Lett. 34, 156 1979. [54] L.Qiang, R.H.Yao, A Drain Current Model Based on the Temperature Effect of a-Si:H Thin-Film Transistorsm, Chinese Physics Letters, 2012,29 (9) [55] Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, Kenta Matsuyama, Yuya Nakamura, Takeshi Nishiwaki, Kazunori Fujita, and Eiji Maruyama, IEEE Journal of Photovoltaics, Vol. 4, No. 1, January 2014 [56] Kaining Dinga, Thomas Kirchartz, Bart E. Pieters, Carolin Ulbrich, Alexander M. Ermes, Sandra Schicho, Andreas Lambertz, Reinhard Carius, and Uwe Rau, Solar Energy Materials & Solar Cells 95 (2011) 3318–3327 [57] Tauc, J., Grigorovici, R.and Vancu, A, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. Status Solidi B, 15: 627–637. (1966) [58] Adachi, S. Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles, 1st ed.; Kluwer Academic Publishers: Boston, MA, USA, 1999; pp. 207–208. [59] Zallen, R. The Physics of Amorphous Solids. John Wiley and Sons, New York (1983). [60] J. Tauc (Ed.), Amorphous and Liquid Semiconductor, Plenum Press, New York, 1974, p. 159. [61] S. R. Elliot, Physics of Amorphous Materials (Longman Scientific andTechnical, New York, 1983). [62] A. R. Zanatta and I. Chambouleyron, “Absorption edge, band tails, and disorder of amorphous semiconductors,” Phys. Rev. B 53, 3833 (1996) [63] Simone Knief and Wolfgang von Niessen, “Disorder, defects, and optical absorption in a-Si and a-Si:H,” Phys. Rev. B 59, 12940 (1999) [64] J. Melsheimer, D. Ziegler, “Band Gap Energy and Urbach Tail Studies of Amorphous, Partially Crystalline and Polycrystalline Tin Dioxide,” Thin Solid Films, 129, (1985), 35–47 [65] B. Akaoglu, K. Sel, I. Atilgan, B. Katircioglu, Opt. Mater. 30 (2008) 1257–1267. [66] Y. P. Chou and S. C. Lee, “Evidence for the Void Size Related IR Absorption Frequency Shifts in Hydrogenated Amorphous Germanium Films,” Solid State Communica- tions, Vol. 113, No. 2, 2000, pp. 73-75. [67] Zhan Shu, Ujjwal Das, John Allen1, Robert Birkmire and Steven Hegedus, “Experimental and simulated analysis of front versus allback-contact silicon heterojunction solar cells: effect of interface and doped a-Si:H layer defects,” Prog. Photovolt: Res. Appl. (2013) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55837 | - |
dc.description.abstract | 在本篇論文中,將以光性為主的方式,分析半導體材料的特性。為了有效降低成本並提高各半導體元件的操作性質,在各種薄膜層被成長後,以非破壞性的光致發光技術,檢測材料暨界面的品質,已經成為重要的一環。因此本論文將利用此技術分別探討矽鍺磊晶薄膜、氧化鋁鈍化矽與非晶矽薄膜材料。
在第二章中,將利用光致發光、電子顯微鏡、等光電技術去分析不同反應氣體(氫氣及氮氣),造成矽鍺薄膜成長速率、缺陷以及鍺的含量多寡等差異。接著第三章中,將介紹將鋁以熱氧化的方式去形成氧化鋁並與原子薄膜層積的氧化鋁比較。同時,也將介紹以原子薄膜層積方式形成的氧化鋁及氧化鈦的雙層結構構成有效鈍化層及抗反射層的方法,並且分別去探討各鈍化層對光致發光強度以及少數載子生命週期的影響。最後,第四章將分析兩種不同非晶矽薄膜的差異,探討在成長時,是否加入氫氣對非晶矽薄膜的光性影響。其中將利用吸收係數比較半導體材料的能階、缺陷數。以光致發光以及少數載子生命週期比較鈍化層界面的優劣,並以傅立葉轉換紅外光譜比較鍵結種類的多寡以及材料間隙大小量測以及光致發光的探討,並對其衍伸出對非結晶半導體材料的能階、缺陷數、鍵結種類的探討 | zh_TW |
dc.description.abstract | In this thesis, we use some optical techniques to analyze characteristics of semiconductor: epitaxial SiGe, Al2O3 passivated silicon, and amorphous silicon. In order to reduce the cost of fabrication, utilizing photoluminescence to examine the quality and defects of interface becomes one of essential method. Besides, some of methods to obtain optical properties are discussed.
First part of this thesis, the carrier gas effects on epitaxial SiGe would be observed. Different carrier gas or precursor would causes not only distinct quality of SiGe but also different growth rate. Besides, the Ge concentration of SiGe also be influenced by these two factors. All of these properties are of importance in fabrication of devices. Hence, in this thesis, SiGe grown using either SiH4 or DCS as precursor and N2 or H2 as carrier gas would be demonstrated. Second, new methods to form Al2O3 passivated silicon would be demonstrated. First, the Al2O3 formed by oxidizing aluminums would be discussed. Next, Al2O3/ TiO2 stack layers deposited by atomic layer deposited to improve the quality of single Al2O3 film is also demonstrated. Finally, Photoluminescence and Quasi-Steady-State Photoconductance measurements are implemented to examine the qualities of passivation layers. Third, the optical properties of hydrogenated amorphous silicon(a-Si:H) films are demonstrated. In this thesis, the influences of H2 dilution for depositing a-Si:H would be discussed. Tauc plot method would be demonstrated to investigate the optical bandgap of a-Si:H films. Also, Fourier Transform Infrared (FTIR) spectrometer are used distinguish the void size of different a-Si:H. In the end, the passviation qualities of the a-Si:H films are also demonstrated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:09:16Z (GMT). No. of bitstreams: 1 ntu-103-R01941003-1.pdf: 2424664 bytes, checksum: 714f6e9b2d73be5360c69b0d823bc031 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | CONTENTS
口試委員會審定書 # Acknowledgement i 摘 要 ii ABSTRACT iii LIST OF FIGURE v LIST OF TABLES ix CONTENTS i Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter 2 Photoluminescence characterization of epitaxial SiGe on Si from by different carrier gas 4 2.1 Introduction 4 2.2 Experiment, Operation Principle, and Material 5 2.2.1 Recombination Models of Direct and Indirect band to band transitions 8 2.2.2 SiH4 and GeH4 as precursor with different carrier gas (N2 and H2) 10 2.2.3 DCS and GeH4 as precursor with different carrier gas (N2 and H2) 16 2.2.4 Photoluminescence Characterization of different SixGe1-x samples 19 2.3 Result and Discussion 23 2.4 Conclusion 24 Chapter 3 Al2O3 and Al2O3/TiO2 passivated on silicon 25 3.1 Introduction 25 3.2 Experiment, Operation Principle, and Material 27 3.2.1 Fundamental mechanism of surface passivation 30 3.2.2 Quasi-Steady-state photo conductance and photoluminescence spectra measurement 34 3.3 Result and Discussion 35 3.3.1 Enhancement of photoluminescence and effective lifetime by Al2O3 formed by thermal oxidized 35 3.3.2 Atomic Layer Deposited of Al2O3/TiO2 dual layers as passivation layer and antireflection coating 41 3.4 Conclusion 45 Chapter 4 Optical properties of hydrogenated amorphous silicon deposited with and without H2 47 4.1 Introduction 47 4.2 Experiment, Operation Principle, and Material 48 4.2.1 Experiment Setup 49 4.2.2 Calculation of absorption coefficient 51 4.3 Result and Discussion 55 4.3.1 Optical analysis of a-Si:H deposited with and without H2 55 4.3.2 Fourier transform infrared spectroscopy (FTIR) 60 4.3.3 Characterization of a-Si:H passivation layers by QSSPC system and photoluminescence measurement 62 4.4 Conclusion 67 Summary and Future Work 68 4.5 Summary 68 4.6 Future Work 69 REFERENCE 71 | |
dc.language.iso | en | |
dc.title | 矽鍺磊晶薄膜、氧化鋁表面鈍化與非晶矽材料之光性分析 | zh_TW |
dc.title | The Optical Characterization of Epitaxial SiGe, Al2O3 Passivated Si and Amorphous Silicon | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張正陽(Jeng-yang Chang),林中一(Chung-Yi Lin),李敏鴻(Min-Hung Lee) | |
dc.subject.keyword | 磊晶矽鍺,氧化鋁,非晶矽,光致發光,鈍化層, | zh_TW |
dc.subject.keyword | Epitaxial SiGe,Al2O3,a-Si:H,Photoluminescence,Passivation layer, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。