Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55818Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡克銓(Keh-Chyuan Tsai) | |
| dc.contributor.author | Kuan-Yu Pan | en |
| dc.contributor.author | 潘冠宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:08:57Z | - |
| dc.date.available | 2014-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | 1. ACI Committee 318 (2011). “Building Code Requirements for Structural Concrete and Commentary (ACI 318-11).” American Concrete Institute.
2. ACI Committee 374 (2005). “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1-05).” American Concrete Institute. 3. AISC 341-10 (2010). “Seismic Provisions for Structural Steel Buildings.” American Institute of Steel Construction, Chicago. 4. AISC 360-10 (2010). “Specification for Structural Steel Buildings.” American Institute of Steel Construction, Chicago. 5. Black, C. J., Makris, N., and Aiken, I. D. (2004). “Component testing, seismic evaluation and characterization of buckling-restrained braces.” Journal of Structural Engineering, 130(6), 880-894. 6. Eligehausen, R., Mallee, R., & Silva, J. F. (2013). “Anchorage in concrete construction.” John Wiley & Sons. 7. Karsan, I. D., and Jirsa, J. O. (1969). “Behavior of concrete under compressive loading.” Journal of Structural Division ASCE, 95(ST12). 8. Lin, Bo-Zhou et al. (2009). “PISA3D User’s Manual”. National Center for Research on Earthquak Engineering. 9. Mander, J. B., Priestley, M. J. N., and Park, R. (1988). “Theoretical stress-strain model for confined concrete.” Journal of Structural Engineering ASCE, 114(8), 1804-1825. 10. Nakamura, H., Maeda, Y., Sasaki, T., Wada, A., Takeuchi, T., Nakata, Y., and Iwata, M. (2000). “Fatigue properties of practical-scale unbonded braces.” Nippon Steel Technical Report, 82(0). 11. Paret, Terrence F. (2007). “Brace for the big one”. Modern Steel Construction. 12. Paulay, T. and Priestley, M. J. N. (1992). “Seismic design of reinforced concrete and masonry buildings. John Wiley & Sons. 13. Popovics, S. (1973). “A numerical approach to the complete stress-strian curve of concrete”. Cement and Concrete Research, 583-599 14. Takeuchi, T., Ida, M., Yamada, S., and Suzuki, K. (2008). “Estimation of cumulative deformation capacity of buckling restrained braces.” Journal of Structural Engineering, 134(5), 822-831. 15. Thornton, W. A. (1991). “On the analysis and design of bracing connections”. National Steel Construction Conference Proceedings. American Institute of Steel Construction. 16. Uang, C.M., Nakashima, M., and Tsai, K.C. (2004). “Research and application of buckling-restrained braced frames”. International Journal of Steel Structures, 4(4), 301-313. 17. Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., and Fujimoto, M. (1988, August). “Properties of brace encased in buckling-restraining concrete and steel tube.” In Proceedings of Ninth World Conference on Earthquake Engineering (Vol. 4, pp. 719-724). 18. 內政部營建署(2010b),「鋼構造建築物鋼結構設計技術規範(二)鋼結構極限設計法規範與解說」,中華民國鋼結構協會。 19. 中華民國結構工程學會(2003),「鋼結構設計手冊(極限設計法)」,科技圖書。 20. 林保均、蔡克銓、吳安傑與莊明介,2013,「挫屈束制支撐與接合設計雲端運算流程解說」,財團法人國家實驗研究院國家地震工程研究中心。 21. 林叡延(2013),「補強用鋼框架斜撐與既有RC構架之接合研究」,臺灣大學土木工程學研究所,碩士論文,黃世建教授指導。 22. 周煌燦,2005,「鋼筋混凝土角隅接頭承受單向彎矩作用之強度行為研究」,國立台灣科技大學營建工程系,博士論文,黃世建教授指導。 23. 游宜哲,2006,「物件導向非線性靜動態三維結構分析程式之擴充」,臺灣大學土木工程學研究所,碩士論文,蔡克銓教授指導。 24. 蔡克銓、吳安傑、林保均、魏志毓與莊明介(2012),「槽接式挫屈束制支撐與脫層材料性能研究」,結構工程,第二十七卷,第三期,第29-59頁。 25. 魏志毓與蔡克銓,2008,「挫屈束制支撐構架之設計」,結構工程,第二十三卷,第四期,第85-100頁。 26. 国土交通省住宅局建築指導課(2001),「既存鉄筋コンクリート造建築物の耐震改修設計指針」,日本建築防災協会。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55818 | - |
| dc.description.abstract | 隨著地震工程研究發展,以及規範的修改與演進,老舊鋼筋混凝土建築物常因不符合現行耐震規範之需求,須進行耐震補強以提升其耐震性能,而使用鋼斜撐框架補強能有效提升結構之耐震性能。目前鋼斜撐框架補強之工法中,對於鋼框架以及鋼筋混凝土構架兩者間之界面,大部份是以後置式錨栓連結,進行力量傳遞,由於後置式錨栓使用數量常較多,施工時之鑽孔需求亦增加。本研究使用挫屈束制支撐以及T型斷面之鋼框架進行補強,有別於常見之補強方式以後置式錨栓傳遞鋼框架之強度至鋼筋混凝土構架,而改以構架四個角落之水泥砂漿承壓塊做為力量傳遞之媒介,可大量減少後置式錨栓之使用量。本研究旨在探討此種補強方式下,構架之傳力機制及補強性能。本研究依此補強方式設計兩座鋼斜撐框架補強試體(BRB-S-WTF和BRB-D-WTF)及一座純鋼框架補強試體(WTF)進行試驗。試驗結果顯示,鋼斜撐框架補強可使構架側力強度持續成長至3%弧度側位移角,提升構架之側力強度達1060kN(約為原RC構架側力強度之3倍),並持續變形至5%弧度側位移角時BRB核心才發生斷裂。補強構架於斜撐受壓時會對構架角隅附近造成壓力,此一壓力可能導致梁柱接頭破壞或在柱端產生似托架之破壞行為。本研究以軟化壓拉桿模型檢核接頭及托架行為之破壞,對於BRB-S-WTF試體,計算之梁柱接頭壓桿強度為810kN,BRB-S-WTF試體BRB之最大軸壓力為1025kN > 810kN,預測梁柱接頭會破壞;而BRB-D-WTF試體BRB之最大軸壓力為807kN < 810kN,預測梁柱接頭不會發生破壞,兩者皆符合試驗結果。另一方面,RC柱之混凝土之抗壓試驗強度為25MPa。若以軟化壓拉桿模型檢核柱之托架破壞,則BRB-S-WTF試體托架之壓桿強度需求為25.1MPa 25MPa,預測會發生托架破壞;而BRB-D-WTF試體托架之壓桿強度需求為19.5MPa < 25MPa,預測托架不會發生破壞,兩者皆符合試驗結果。故軟化壓拉桿模型能有效預測試體梁柱接頭及托架行為之破壞。本研究亦利用Abaqus有限元素模型分析結果所觀察到之傳力行為推導預測構架側力強度及各梁柱構件內力之簡化分析方法。由簡化分析方法計算BRB-S-WTF試體之側力強度為1120kN,實際試驗反應為1289kN;計算BRB-D-WTF試體計算之側力強度為973kN,實際試驗反應為1018kN,故簡化分析方法能有效預測構架補強後之側力強度,所得之構件內力亦可用於RC構件之強度檢核。本研究提出一種以挫屈束制支撐補強既有鋼筋混凝土構架之設計、檢核流程。 | zh_TW |
| dc.description.abstract | With the advancement in earthquake engineering technology and seismic provisions, many existing old reinforced concrete (RC) structures do not meet the current seismic standards. Seismic retrofit using steel braced frames has been found as a popular method to improve the seismic performance of RC buildings. For this purpose, closely-spaced post-installed anchors are widely adopted in the interface between the RC and steel frames to transfer the seismic loads. It often requires a substantial amount of on-site work of hole drilling and installation of anchors on the RC members. In this research, three identical strong-beam-weak-column RC frames are retrofitted, each with or without a diagonal buckling-restrained brace (BRB) incorporated into a steel braced frame using WT sections on four sides. Instead of applying the post-installed anchors to transfer the seismic loads, high-strength mortar bearing blocks at the four corners of the RC frame are constructed. The loads in the steel frame are transferred to the RC frame through the bearing blocks. This approach can reduce the usage of large amount of post-installed anchors. The purpose of this research is to evaluate the performance of the retrofitted frame, and investigate the load transfer mechanism between the RC frame and the steel frame. In this study, cyclic loading tests were applied on two RC frames retrofitted with steel braced frames using BRBs (BRB-S-WTF and BRB-D-WTF), and on one RC frame retrofitted with the steel frame without the brace. Test results show that, the lateral strength of BRB-D-WTF continued to increase until reaching 3% drift ratio, and developed 1060kN story shear (3 times of the bare RC frame) before the BRB core fractured at the 5% drift ratio. When the brace is in compression, it imposes a compressive force near the tip of the frame corner. This compressive force may cause an RC joint failure or a corbel-type failure in the RC column. In this research, these two failure modes are evaluated using the softened strut-and-tie model. The strength of the compressive strut in the beam-to-column joint is 810kN. In the BRB-S-WTF specimen, the estimated maximum brace compressive force is 1025kN. Thus, the beam-to-column joint failure was predicted. In the BRB-D-WTF specimen, the estimated maximum brace compressive force is 807kN. Thus, no beam-to-column joint failure was anticipated. The predictions match the test results. The concrete compressive strength of the RC column is 25MPa. In the BRB-S-WTF specimen, the strength demand on the corbel computed using the softened strut-and-tie model is 25.1MPa and approximately equals 25MPa. Thus, it predicted that the corbel failure might occur. In the BRB-D-WTF specimen, the strength demand on the corbel is 19.5MPa and less than 25MPa. The model predicted that the corbel failure should not occur. These two predictions also match the test results. Therefore, it appears that the softened strut-and-tie model is effective in predicting the joint failure and corbel failure of the RC frame. In this research, a simplified method for estimating the lateral strength of the retrofitted structure and the internal forces of RC beams and columns is developed from observing the load transfer mechanism found in the Abaqus finite element model (FEM) analysis results. The estimated lateral strengths for the BRB-S-WTF and BRB-D-WTF specimens are 1120kN and 973kN, predicted the experimental results of 1289kN and 1018kN, respectively. This confirms that the proposed simplified method is effective for estimation of the lateral strength of the retrofitted frame, and computing the estimated internal force demands on RC frame members. This study proposes a design procedure for retrofitting existing RC frames with buckling-restrained braced frames. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:57Z (GMT). No. of bitstreams: 1 ntu-103-R01521219-1.pdf: 12742407 bytes, checksum: dda89d03a2732ca2d1a881c76f338ded (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT IV 目錄 VI 圖目錄 X 表目錄 XIV 照片目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 2 1.4 論文架構 2 第二章 鋼斜撐框架補強RC構架各部元件介紹 3 2.1 補強目標及力學原理 3 2.2 挫屈束制支撐 3 2.2.1 挫屈束制支撐簡介 3 2.2.2 挫屈束制支撐之組成 4 2.2.3 挫屈束制支撐之力學性質 4 2.2.3.1 降伏強度與極限強度 4 2.2.3.2 等效勁度 5 2.2.3.3 核心應變與構架側位移角之關係 5 2.2.3.4 累積塑性變形 (Cumulative Plastic Deformation, CPD) 6 2.2.3.5 挫屈束制支撐整體撓曲挫屈破壞 6 2.2.4 槽接式挫屈束制支撐簡介 6 2.3 T型鋼框架 7 2.4 水泥砂漿承壓塊 7 2.5 化學錨栓 7 2.5.1 化學錨栓簡介 7 2.5.2 化學錨栓之破壞模式 7 第三章 鋼斜撐框架補強RC構架分析 8 3.1 待補強RC構架介紹 8 3.2 使用ABAQUS有限元素模型分析鋼框受力 8 3.2.1 模型介紹 8 3.2.2 分析結果與討論 9 3.2.3 各部元件受力預測式之推導 9 3.3 使用PISA3D軟體分析構架反應 10 3.3.1 純鋼筋混凝土構架分析 10 3.3.1.1 模型介紹 10 3.3.1.2 分析結果與討論 11 3.3.2 鋼框斜撐補強構架分析 11 3.3.2.1 模型介紹 11 3.3.2.2 分析結果與討論 12 3.3.3 預測式與模型分析結果比較 12 第四章 試驗計劃 14 4.1 試驗動機 14 4.2 試體設計 15 4.2.1 鋼筋混凝土構架柱彎矩強度 15 4.2.2 BRB-S-WTF試體 17 4.2.2.1 鋼框及挫屈束制支撐 18 4.2.2.2 RC構架強度檢核 24 4.2.2.3 水泥砂漿承壓塊 26 4.2.2.4 化學錨栓 26 4.2.3 BRB-D-WTF試體 33 4.2.4 WTF試體 33 4.3 試體製造及補強施工 33 4.3.1 挫屈束制支撐製造過程 33 4.3.2 鋼框製造過程 34 4.3.3 構架補強之施工流程 34 4.4 試驗裝置與試驗方法 35 4.4.1 試驗佈置 35 4.4.2 加載歷時 35 4.4.3 量測儀器規劃 35 4.4.4 資料擷取系統 37 第五章 試驗結果與討論 38 5.1 材料試驗結果 38 5.1.1 鋼材拉力試驗 38 5.1.2 混凝土及水泥砂漿抗壓試驗 38 5.2 WTF試體試驗結果 38 5.2.1 試驗觀察記錄 39 5.2.2 試驗結果討論 39 5.2.2.1 構架受力變形關係 39 5.2.2.2 鋼框與RC構架之開合 39 5.2.2.3 塑鉸位置 39 5.2.2.4 鋼框軸力與剪力 40 5.3 BRB-S-WTF試體試驗結果 40 5.3.1 試驗觀察記錄 40 5.3.2 試驗結果討論 41 5.3.2.1 構架與斜撐受力變形關係 41 5.3.2.2 鋼框與RC構架之開合 41 5.3.2.3 塑鉸位置 42 5.3.2.4 鋼框軸力與剪力 42 5.3.3 軟化壓拉桿模型檢核角隅接頭強度 42 5.3.4 軟化壓拉桿模型檢核柱托架破壞強度 45 5.4 BRB-D-WTF試體試驗結果 46 5.4.1 試驗觀察記錄 46 5.4.2 試驗結果討論 46 5.4.2.1 構架與斜撐受力變形關係 46 5.4.2.2 鋼框與RC構架之開合 47 5.4.2.3 塑鉸位置 47 5.4.2.4 鋼框軸力與剪力 47 5.4.3 軟化壓拉桿模型檢核角隅接頭強度 48 5.4.4 軟化壓拉桿模型檢核柱托架破壞強度 48 5.5 試驗結果與PISA3D模型分析結果比較 49 第六章 結論與建議 50 6.1 研究結論 50 6.2 未來建議 51 6.3 設計流程 51 參考文獻 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 耐震補強 | zh_TW |
| dc.subject | 鋼筋混凝土構架 | zh_TW |
| dc.subject | 挫屈束制支撐 | zh_TW |
| dc.subject | 承壓塊 | zh_TW |
| dc.subject | 後置式錨栓 | zh_TW |
| dc.subject | 弱柱強梁 | zh_TW |
| dc.subject | buckling-restrained brace | en |
| dc.subject | strong beam weak column | en |
| dc.subject | seismic retrofit | en |
| dc.subject | reinforced concrete frame | en |
| dc.subject | post-installed anchor | en |
| dc.subject | bearing block | en |
| dc.title | 挫屈束制支撐鋼框補強既有鋼筋混凝土構架之研究 | zh_TW |
| dc.title | Seismic Retrofit of Existing Reinforced Concrete Frames Using Buckling-Restrained Braced Frames | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃世建(Shyh-Jiann Hwang),林克強(Ker-Chun Lin) | |
| dc.subject.keyword | 耐震補強,鋼筋混凝土構架,挫屈束制支撐,承壓塊,後置式錨栓,弱柱強梁, | zh_TW |
| dc.subject.keyword | seismic retrofit,reinforced concrete frame,buckling-restrained brace,bearing block,post-installed anchor,strong beam weak column, | en |
| dc.relation.page | 160 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 12.44 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
