請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55812
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱美妃(Mei-Fei Chu) | |
dc.contributor.author | Bin-Hao Yang | en |
dc.contributor.author | 楊秉澔 | zh_TW |
dc.date.accessioned | 2021-06-16T05:08:51Z | - |
dc.date.available | 2019-08-25 | |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-19 | |
dc.identifier.citation | Anders, E. and Grevesse, N., 1989. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53: 197-214.
Barnes, E.M., Weis, D. and Groat, L.A., 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 123-133: 21-36. Bickle, M.J., Chapman, H.J. and You, C.F., 2000. Measurement of lithium isotopic ratios as lithium tetraborate ions. International Journal of Mass Spectrometry, 202: 273-282. Bouman, C., Elliott, T. and Vroon, P.Z., 2004. Lithium inputs to subduction zones. Chemical Geology, 212: 59-79. Chan, L.H. and Edmond, J.M., 1988. Variation of lithium isotope composition in the marine environment: A preliminary report. Geochimica et Cosmochimica Acta, 52: 1711-1717. Chan, L.H., Edmond, J.M., Thompson, G. and Gillis, K., 1992. Lithium isotopic composition of submarine basalts-implications for the lithium cycle in the oceans. Earth and Planetary Science Letters, 108: 151-160. Chan, L.H., Edmond, J.M. and Thompson, G., 1993. A lithium isotope study of hot-springs and metabasalts from mid-ocean ridge hydrothermal systems. Journal of Geophysical Research, 98: 9653-9659. Chan, L.H., Gieskes, J.M., You, C.F. and Edmond, J.M., 1994. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochimina et Cosmochimica Acta, 58: 4443-4454. Chan, L.H. and Kastner, M., 2000. Lithium isotopic compostitions of pore fluids and sediments in the Costa Rica subduction zone: Implications for fluid processes and sediment contribution to the arc volcanoes. Earth and Planetary Science Letters, 183: 275-290. Chan, L.H., Alt, J.C. and Teagle, D.A.H., 2002a. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth and Planetary Science Letters, 201: 187-201. Chan, L.H., Leeman, W.P. and You, C.F., 2002b. Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chemical Geology, 182: 293-300. Chan, L.H. and Fery, F. A., 2003. Lithium isotope geochemistry of the Hawaiian plume: Results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochemistry, Geophysics, Geosystems, 4 (3). Chan, L.H., Leeman, W.P. and Plank, T., 2006. Lithium isotopic composition of marine sediments. Geochemistry, Geophysics, Geosystems, 7 (6). Choi, M.S., Ryu, J.S., Park, H.Y., Lee, K.S., Kil, Y.W. and Shin, H.S., 2013. Precise determination of the lithium isotope ratio in geological samples using MC-ICP-MS with cool plasma. International Journal of Mass Spectrometry and Ion Physics, 28: 505-509. Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M. and Handle,r M.R., 1997. A simple method for the precise determination of >=40 trace elements in geological samples by ICPMS using enriched isotope internal standardization. Chemical Geology, 134: 311-326. Elliott, T., Jeffcoate, A., and Bouman, C., 2004. The terrestrial Li isotope cycle: Light-weight constrains on mantle convection. Earth and Planetary Science Letters, 220: 231-245. Flesch, G.D., Anderson Jr., A.R. and Svec, H.J., 1973. A secondary isotopic standard for 6Li/7Li determinations. International Journal of Mass Spectrometry and Ion Physics, 12 (3): 265-272. Foustoukos, D.I., James, R.H., Bernddt, M.E. and Seyfried, W.E., 2004. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour field, northern Juan de Fuca Ridge. Chemical Geology, 212: 17-26. Gao, Y. and Casey, J.F., 2012. Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2. Geostandards and Geoanalytical Research, 36 (1): 75-81. Govindaraju, K., 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, 18: 1-158. Halama, R., Savov, I.P., Rudnick, R.L. and McDonough, W.F., 2009. Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Mineral Petrol, 158: 197-222. Hoefs, J. and Sywall, M., 1997. Lithium isotope composition of Quaternary and Tertiary biogene carbonates and a global lithium isotope balance. Geochim Cosmochim Acta, 61: 2679-2690. Huang, K.F., You, C.F., Liu, Y.H., Wang R.M., Lin, P.Y. and Chung, C.H., 2010. Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. International Journal of Mass Spectrometry and Ion Processes, 25: 1019-1024. Huh, Y., Chan, L.H., Zhang, L. and Edmond, J.M., 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62: 2039-2051. Huh, Y., Chan, L.H. and Edmond, J.M., 2001. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth and Planetary Science Letters, 194: 189-199. Imai, N., Terashima, S., Itoh, S. and Ando, A., 1995. 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples 'Igneous Rock Series'. Geostandards Newsletter, 19 (2) 135-213. Ionov, D.A. and Seitz, H.M., 2008. Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: Mantle sources vs. Eruption histories. Earth and Planetary Science Letters, 266: 316-331. James, R.H., Rudnick, M.D. and Palmer, M.R., 1999. The alkali element and boron geochemistry of the Escanaba Trough sediment-hosted hydrothermal system. Earth and Planetary Science Letters, 171: 157-169. Janousek, V., Erban, V., Holub, F.V., Magna, T., Bellon, H., Mlcoch, B., Wiechert, U. and Rapprich, V., 2010. Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua. Journal of Volcanology and Geothermal Research, 192: 232-256. Jeffcoate, A.B., Elliott, T., Thomas, A. and Bouman, C., 2004. Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS. Geostandards and Geoanalytical Research, 28: 161-172. John, T., Gussone, N., Pokrovsky, O.S., Bebout, G.E., Dohmen, R., Halama, R., Klemd, R., Magna, T. and Seitz, H.M., 2012. Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature, 5: 489-492. Kasemann, S., Jeffcoate, A.B. and Elliot, T., 2005. Lithium isotope composition of basalt glass reference material. Analytical Chemistry, 77: 5251-5257. Kisakurek, B., Widdowson, M. and James, P.H., 2004. Behaviour of Li isotopes during continental weathering: The Bidar laterite profile, India. Chemical Geology, 212: 27-44. Kosler, J., Magna, T., Mlcoch, B., Mixa, P., Nyvlt, D., and Holub, F.V., 2009. Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chemical geology, 258: 207-218. Knauth, D.C., Federman, S.R., Lambert, D.L. and Crane, P., 2000. Newly synthesized lithium in the interstellar medum. Nature, 405: 656. Krienitz, M.S., Garbe-Schonberg, C.D., Romer, R.L., Meixner, A., Haase, K.M. and Stroncik, N.A., 2012. Lithium isotope variations in Ocean Island Basalts-Implications for the development of mantle heterogeneity. Journal of Petrology, 53 (11): 2333-2347. Liu, X.M., Rudnick, R.L., Hier-Majumder, S. and Sirbescu, M.L.C., 2010. Processes controlling lithium isotopic distribution in contact aureoles: A case study of the Florence County pegmatites, Wisconsin. Geochemistry, Geophysics, Geosystems, 11 (8). Magna, T., Wiechert, U.H. and Halliday, A.N., 2004. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICP-MS. International Journal of Mass Spectrometry, 239: 67-76. Magna, T., Wiechert, U.H., Grove, T.L. and Halliday, A.N., 2006a. Lithium isotope fractionation in the southern Cascadia subduction zone. Earth and Planetary Science Letters, 250: 428-443. Magna, T., Wiechert, U.H. and Halliday, A.N., 2006b. New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth and Planetary Science Letters, 243: 336-353. Marks, M.A.W., Rudnick, R.L., McCammon, C., Vennemann, T.W. and Markl, G., 2007. Arrested kinetic Li isotope fractionation at the margin of the Ilimaussaq complex, South Greenland: Evidence for open-system processes during final cooling of peralkaline igneous rocks. Chemical Geology, 246: 207-230. Marriott, C.S., Henderson, G.M., Crompton, R., Staubwasser, M. and Shaw, S., 2004. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chemical Geology, 212: 5-15. Marschall, H.R., Pogge von Strandmann, P.A.E., Seitz, H.M., Elliot, T. and Niu, Y., 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth and Planetary Science Letters, 262: 563-580. Matsui, Y., Onuma, N., Nagasawa, H., Higuchi, H. and Banno, S., 1977. Crystal structure control in trace element partition between crystal and magma. Tectonics, 100: 315-324. Michiels, E. and Bievre, P.De., 1983. Absolute isotopic composition and the atomic weight of a natural sample of lithium. International Journal of Mass Spectrometry and Ion Physics, 49: 265-274. Millot, R., Guerrot, C. and Vigier, N., 2004. Accurate and high-precision measurement of lithium Isotopes in two reference materials by MC-ICP-MS. Geostandards and geoanalytical research, 28: 153-159. Millot, R., Scaillet , B. and Sanjuan , B., 2010. Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochimica et Cosmochimica Acta, 74: 1852-1871. Moriguti, T. and Nakamura, E., 1998a. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth and Planetary Science Letters, 163: 167-174. Moriguti, T. and Nakamura, E., 1998b. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chemical Geology, 145: 91-104. Nishio, Y. and Nakai, S., 2002. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 456: 271-281. Nishio, Y., Okamura, Kei, Tanimizu, M., Ishikawa, T. and Sano, Y., 2010. Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: Implications for deep-seated fluids and earthquake swarms. Earth and Planetary Science Letters, 297: 567-576. Olive, K.A. and Schramm, D.N., 1992. Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation. Nature, 360: 439-442. Penniston-Dorland, S.C., Bebout, G.E., Pogge von Strandmann, P.A.E., Elliott, T. and Sorensen, S.S., 2012. Lithium and its isotopes as traces of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA. Geochimica et Cosmochimica Acta, 77: 530-545. Pistiner, Y.S. and Henderson, G.M., 2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science, 214: 327-339. Plumlee, G., 1998. USGS Certificate of Analysis Basalt, Hawaiian Volcanic Observatory, BHVO-2. http://minerals.cr.usgs.gov/geo_chem_stand/, USGS. Pogge von Strandmann, P.A.E., Burton, K.W., James, R.H., van Calsteren, P. and Gislason,S.R., 2010. Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chemical Geology, 270: 227-239. Pogge von Strandmann, P.A.E., Elliott, T., Marschall, H.R., Coath, C., Lai, Y.J., Jeffcoate, A.B. and Ionov, D.A., 2011. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica et Cosmochimica Acta, 75: 5247-5268. Pogge von Strandmann, P.A.E., Opfergelt, S., Lai, Y.J., Sigfusson, B., Gislasond, S.R., Burton, K.W., 2012. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth and Planetary Science Letters, 339-340: 11-23. Qi, H.P., Taylor, P.D.P., Berglumnd, M. and De Bievre P., 1997. Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016. International Journal of Mass Spectrometry and Ion Processes, 171: 263-268. Rosner, M., Ball, L., Peucker-Ehrenbrink, B., Blusztajn, J.S., Bach, W. and Erzinger, J., 2007. A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and d7Li values of seawater and rock reference materials. Geostandards and Geoanalytical Research, 31 (2): 77-88. Rudnick, R.L. and Nakamura, E., 2004. Preface to “Lithium isotope geochemistry”. Chemical Geology, 212: 1-4. Rudnick, R.L., Tomascak, P.B., Njo, H.B. and Gardner, L.R., 2004. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology, 212: 45-57. Russ, III, G.P. and Bazan, J.M., 1987. Isotopic ratio measurements with an inductively coupled plasma source mass spectrometer. Spectrochimica Acta, part B 42: 49-62. Ryan, J.G., Langmuir, C.H., 1987. The systematic of lithium abundances in young volcanic rocks. Geochim. Cosmochim. Acta, 51: 1727-1741. Sahoo, S.K. and Masuda, A., 1995. High-precision isotopic measurement of lithium by thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 151: 189-196. Schuessler, J.A., Schoenberg, R. and Sigmarsson, O., 2008. Iron and lithium isotope systematics of the Hekla volcano, Iceland - Evidence for Fe isotope fractionation during magma differentiation. Chemical Geology, 258: 78-91. Seitz, H.M., and Woodland, A.B., 2000, The distribution of lithium in peridotitic and phroxenitic lithologies— an indicator of magmatic and metasomatic processes. Chemical Geology, 166: 47-64. Seitz, H.M., Brey, G.P., Lahaye, Y., Durali, S. and Weyer, S., 2004. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chemical Geology, 212: 163-177. Seyfried, W.E., Jr., Janecky, D.R., and Mottl, M.J., 1984. Alteration of the oceanic crust: Implication for geochemical cycles of lithium and boron. Geochimica et Cosmochimica Acta, 48: 557-569. Seyfried, W.E., Jr., Chen, X., and Chan, L.H., 1998. Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalts: An experimental study at 350°C, 500 bars. Geochimica et Cosmochimica Acta, 62: 949-960. Strelow, F.W.E., Weinert, C.H.S.W. and van der Walt, T.N., 1974. Separation of lithium from sodium, beryllium and other elements by cation-exchange chromatography in nitric acid-methanol. Analytica Chimica Acta, 71: 123. Tang, Y.J., Zhang, H.F. and Ying, J.F., 2007. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49: 374-388. Tang, Y.J., Zhang, H.F., Nakamura, E. and Ying, J.F., 2011. Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol, 161: 845-861. Taylor, T.I. and Urey, H.C., 1938. Fractionation of the Li and K isotopes by chemical exchange with zeolites. The Journal of Chemical Physics, 6: 429-438. Teng, F.Z, McDonough, W.F., Rudnick, R.L., Dalpe, C., Tomascak, P.B., Chappell, B.W. and Gao, S., 2004. Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, 68: 4167-4178. Teng, F.Z., Rudnick, R.L., McDonough, W.F. and Wu, F.Y., 2009. Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust. Chemical Geology, 262: 370-379. Tomascak, P.B., Carlson, R.W. and Shirey, S.B., 1999a. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS. Chemical Geology, 158: 145-154. Tomascak, P.B., Tera, F., Helz, R.T. and Walker, R.J. 1999b. The absence of lithium isotope fractionation during basalt differentiation: new measurements by multi-collector sector ICP-MS. Geochimica et Cosmochimica Acta, 63: 907-910. Tomascak, P.B. 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Reviews in Mineralogy and Geochemistry, 55: 153-195. Vigier, N., Decarreau, A., Millot, R., Carignan, J., Petit, S. and France-Lanord, C., 2008. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochimica et Cosmochimica Acta, 72: 780-792. Wilson, S.A., 2001. USGS Certificate of Analysis Dunite, Twin Sisters Mountain DTS-2. http://minerals.cr.usgs.gov/geo_chem_stand/, USGS. You, C.F., and Chan, L.H., 1996. Precise determination of lithium isotopic composition in low concentration natural samples. Geochimica et Cosmochimica Acta, 60: 909-915. Zack, T., Tomascak, P.B., Rudnick, R.L., Dalpe, C. and McDonough, W.F., 2003. Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth and Planetary Science Letters, 208: 279-290. Zhang, L., Chan, L.H. and Gieskes, J.M. 1998. Lithium isotope geochemistry of pore waters, Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochimica et Cosmochimica Acta, 62: 2437-2450. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55812 | - |
dc.description.abstract | 鋰具有兩個穩定同位素6Li與7Li,兩者質量差異大,在近地表環境的流體與固體交互作用中會產生明顯分化,使得鋰同位素深具潛力作為近地表地質作用中的示蹤劑 (如:隱沒帶脫水作用與地表化學風化等)。本研究工作亟欲建立岩石的鋰同位素分析方法,在純化過程中避免造成鋰同位素分化,並使用多接收感應耦合電漿質譜儀 (multiple-collector inductively coupled plasma mass spectrometry, MC-ICP-MS),挾其優勢以精準、快速地測量經純化過後之低鋰濃度樣品 ([Li]:20 ppb) 的鋰同位素比值 (7Li/6Li)。本研究以矽酸鹽火成岩參考樣建立鋰同位素分析方法;25 mg樣品經酸溶並完全溶解後,以1.6 ml AG 50W-X8氫型陽離子交換樹脂與1 M硝酸 + 80% (v/v)甲醇的提洗液,使用層析法先建立不同岩性樣品的提洗曲線,除了確認鋰的提洗區間,也可得知會出現在鋰樣品溶液中的元素,以鋰同位素標準品L-SVEC混合不同濃度的其它元素。將純化後達> 99%回收率的鋰樣品溶液,續由MC-ICP-MS進行鋰同位素分析,儀器分析時,直接在質量峰測量零值,並以標準品—樣品—標準品包圍法計算樣品的鋰同位素數值δ7Li。結果顯示,不同岩性樣品中,鋰的提洗行為略有些差異,當鋰回收率> 99%時,基性岩至酸性岩的鋰萃取溶液中會有較高的鈉鋰比值與鈦鋰比值,其中基性岩含有高鈦,超基性岩含有高鈉,但對於鋰同位素數值的量測未造成明顯影響。儀器長期的分析精度為0.5‰ (2 S.D.),USGS參考樣BHVO-2、AGV-2、G-2與RGM-1的δ7Li測值分別是+4.5‰、+7.3‰、-0.4‰與+2.8‰,皆與文獻值一致。 | zh_TW |
dc.description.abstract | Lithium (Li) has two stable isotopes, Li6and Li7, with large mass difference. Their isotopic fractionation significantly occurs in the interaction between soild/rock and aqueous phase/water in low termperature, and thus lithium isotopes have high potential as a geochemical tracer for aqueous-related geological processes, e.g. weathering on the Earth’s surface and dehydration of altered oceanic crust in subduction zones. The goal of this study is to establish the method of Li isotopes in igneous rocks in NTU as a base of future researches. At beginning, approximately 25 mg powder of international reference rocks, from peridotite to rhyolite or granite, were digested by inorganic acids completely. Chemical separation was followed and sample solution was eluted through 1.6 ml AG50W-X8 cation exchange resin by 1 M HNO3-80% (v/v) methanol to set up elution curves. According to the elution curves, the Li fraction of each sample with >99% recovery yield was collected and then quantitatively analysed by ICP-QMS and MC-ICP-MS for its matrix elements and lithium isotopes, δ7Li, respectively. In MC-ICP-MS analysis, zero was determined at each mass peak center of a blank solution, and the “standard-sample-standard bracketing” method was adopted in order to correct for the mass bias. Our preliminary results indicate: The elution curve of Li slightly varies with lithology. Li fraction of ultramafic and mafic rock samples may have matrices that concentrations are higher than Li, i.e. sodium and titanium, respectively. However, such high-abundance impurities do not affect our lithium isotopic measurements demonstrated by analysing doped with L-SVEC. Long-term precision of this study is 0.5‰ (2 S.D.). δ7Li values measured of USGS RMs (BHVO-2: +4.5‰; AGV-2: +7.3‰; G-2: -0.4‰; RGM-1: +2.8‰) are consistent with literature values. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:51Z (GMT). No. of bitstreams: 1 ntu-103-R00241316-1.pdf: 13782447 bytes, checksum: 458887e20f314e02242acabc0551acc5 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 Ⅰ
致謝 Ⅱ 中文摘要 Ⅲ Abstract Ⅳ 目錄 Ⅵ 圖目錄 Ⅷ 表目錄 Ⅸ 第一章 緒論 1 1.1 研究背景 1 1.1.1 簡介鋰與鋰同位素 1 1.1.2 鋰同位素的分析技術 4 1.2 研究動機與目的 5 1.2.1 研究動機 5 1.2.2 研究目的 6 第二章 前人研究 7 2.1 溶樣 7 2.2 層析純化 9 2.3 多接收感應耦合電漿質譜分析 14 第三章 研究方法 17 3.1 溶樣 17 3.2 層析純化 19 3.3 質譜分析 22 3.3.1 四極桿感應耦合電漿質譜術 22 3.3.2 多接收感應耦合電漿質譜術 23 第四章 實驗結果與初步討論 27 4.1 提洗曲線 27 4.1.1 鋰的提洗曲線 27 4.1.2 其它元素的提洗曲線 31 4.2 基質元素 37 4.3 標準品與參考樣分析 39 4.3.1 回收率 39 4.3.2 精準度與準確度 40 4.3.3 空白 47 第五章 進階討論 48 5.1 岩性與提洗曲線 48 5.2 訊號零值的影響 49 5.3 基質效應 53 5.3.1 鈦產生的效應 53 5.3.2 鈉產生的效應 57 5.4 標準品與參考樣分析 61 第六章 結論 62 參考文獻 64 附錄 76 | |
dc.language.iso | zh-TW | |
dc.title | 岩石鋰同位素的分析方法:應用多接收感應耦合電漿質譜術 | zh_TW |
dc.title | Lithium isotopic analysis of rocks: using multiple-collector ICP-MS | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃國芳(Kuo-Fang Huang),蘇志杰(Chih-Chieh Su),李皓揚(Hao-Yang Li) | |
dc.subject.keyword | 鋰同位素,多接收感應耦合電漿質譜儀,提洗曲線,標準品—樣品—標準品包圍法, | zh_TW |
dc.subject.keyword | lithium isotopes,multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS),elution curve,standard-sample-standard bracketing method, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 13.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。