Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55783
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙鍵哲
dc.contributor.authorYu-Lin Chenen
dc.contributor.author陳昱霖zh_TW
dc.date.accessioned2021-06-16T05:08:25Z-
dc.date.available2019-09-05
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationBanz, C., Pirsch, P., and Blume H., 2012. Evaluation of penalty functions for semi-global matching cost aggregation, International Archives of Photogrammetry and Remote Sensing, ISPRS 2012 Congress, Melbourne, Australia, 39, Part B3:1-6.
Bleyer, M. and Gelautz, M., 2005. A layered stereo matching algorithm using image segmentation and global visibility constraints, ISPRS Journal of Photogrammetry and Remote Sensing, 59(3): 128-150.
Birchfield, S. and Tomasi, C., 1998. Depth discontinuities by pixel to-pixel stereo, In Proceedings of the Sixth IEEE International Conference on Computer Vision, 35(3): 269-293.
Fua, P., 1993. A parallel stereo algorithm that produces dense depth maps and preserves image features, Machine vision and applications, 6(1): 35-49.
Gerke, M., 2009. Dense matching in high resolution oblique airborne images, CMRT09 Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms and Evaluation , ISPRS 2009 Congress, 38.Part 3/W4, Paris, France, pp. 77-82.
Grun A., 1985. Adaptive least squares correlation - a powerful image matching technique, South African Journal of Photogrammetry, Remote Sensing and Cartography, 14(3): 175-187.
Haala, N., 2011. Multiray photogrammetry and dense image matching. Photogrammetric Week 2011:185-195.
Hirschmuller, H., 2005. Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information, IEEE Conf. on Computer Vision and Pattern Recognition, 2: 807-814.
Hirschmuller, H., 2008. Stereo processing by semiglobal matching and mutual information, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):328-341.
Hirschmuller, H. and Scharstein, D., 2009. Evaluation of Stereo Matching Costs on Images with Radiometric Differences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9): 1582-1599.
Hirschmuller, H., 2011. Semi-Global Matching-Motivation, Developments and Applications, Photogrammetric Week 2011:173-184.
Kim, J., Kolmogorov, V. and Zabih, R., 2003. Visual correspondence using energy minimization and mutual information, International Conference on Computer Vision Congress, pp.1033-1040.
Klaus, A., Sormann, M., & Karner, K., 2006. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure, ICPR on Pattern Recognition, 3: 15-18.
Kolmogorov, V., and Zabih, R., 2001. Computing visual correspondence with occlusions using graph cuts, In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2: 508-515)
Lei, C., Selzer, J., and Yang, Y. H., 2006. Region-tree based stereo using dynamic programming optimization. IEEE Conf. on Computer Vision and Pattern Recognition, 2: 2378-2385.
Michael, M., Salmen, J., Stallkamp, J., and Schlipsing, M., 2013. Real-Time Stereo Vision: Optimizing Semi-Global Matching, In Proceedings of the IEEE Intelligent Vehicles Symposium, pp.1197-1202.
Sun, J., Li, Y., Kang, S. B., and Shum, H. Y., 2005. Symmetric stereo matching for occlusion handling. IEEE Conf. on Computer Vision and Pattern Recognition, 2: 399-406.
Van Meerbergen, G., Vergauwen, M., Pollefeys M. and Van Gool, L., 2002. A Hierarchical Symmetric Stereo Algorithm using Dynamic Programming, International Journal of Computer Vision, 47(1-3):275-285.
Veksler, O., 2005, Stereo correspondence by dynamic programming on a tree, IEEE Conf. on Computer Vision and Pattern Recognition,2: 384-390.
Viola, P. and Wells, W. M., 1997. Alignment by maximization of mutual information, International Journal of Computer Vision, 24(2):137-154.
Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., andNister, D., 2006. Stereo Matching with Color-Weighted Correlation, Hierachical Belief Propagation and Occlusion Handling. IEEE Conf. on Computer Vision and Pattern Recognition, 2: 2347-2354.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55783-
dc.description.abstract近年來利用影像產製高密度點雲為攝影測量和電腦視覺領域中之重要議題。基於互資訊之半全域匹配法利用多路徑進行匹配值加總,提升逐像元匹配運算效率。然而,為減少匹配錯誤,利用補償值於匹配值加總時進行平滑約制,因此路徑上的平滑約制補償值設定成為決定視差成果的關鍵。本研究分析補償值對半全域影像匹配之影響,並以補償值函數最小值設定模式進行補償函數特性分析,以視差影像之一致性像元數趨勢提供補償值設定參考,於實驗室影像和實際影像中探討作業參數擬定。zh_TW
dc.description.abstractOver the last few years, dense image matching for point cloud generation has attracted research attention in both the photogrammetry and computer vision communities. The semi-global matching (SGM) algorithm based on mutual information is one of well-known methods which applies multi-directional smoothing constraint in cost aggregation to efficiently enhance the rate of stereo matching. On the other hand, the smoothing constraint, among others, is the core issue to equip the penalty function with sufficient power for reducing erroneous matches if appropriately chosen. For that, the purpose of this study is to characterize the smoothing constraint by setting mode of minimum of the penalty function. And offer reference of tuning parameters of penalty function by trend of consistency pixel numbers. Tests on Middlebury Stereo Datasets and real image have been carried out and evaluated.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:08:25Z (GMT). No. of bitstreams: 1
ntu-103-R01521114-1.pdf: 7702266 bytes, checksum: a69eb949701ba636fa2df0cdd43c5aa0 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.2.1 半全域匹配相關研究 1
1.2.2 半全域匹配之平滑約制補償值相關研究 2
1.3 研究方法與流程 3
1.4 論文架構 4
第二章 研究背景 5
2.1 匹配運算模式 5
2.2 平滑約制原理 6
第三章 研究方法 7
3.1 半全域式匹配演算法 7
3.1.1 匹配值計算 8
3.1.2 匹配值加總 10
3.1.3 視差估算 12
3.1.4 平滑約制補償值 13
3.2 半全域式匹配演算法平滑約制補償值設定 13
3.2.1 關於平滑約制補償值設定 13
3.2.2 關於平滑約制補償函數設定 14
3.2.3 平滑約制補償值常數設定分析 15
3.2.4 平滑約制補償值函數設定分析 16
3.2.5 補償值P2函數最小值設定模式 17
3.3 匹配品質評估指標及統計數據參考指標 18
3.3.1 錯誤像元百分率 19
3.3.2 均方根誤差 19
3.3.3 未通過一致性檢查像元百分率 19
3.3.4 一致性檢查均方根差異 19
第四章 實驗成果與分析 21
4.1 實驗架構與配置 21
4.2 平滑約制常數設定探討 23
4.2.1 平滑約制常數補償特性分析 27
4.2.2 平滑約制常數設定經驗範圍 38
4.3 平滑約制函數設定探討 38
4.3.1 平滑約制函數補償特性分析 50
4.3.2 平滑約制函數設定經驗範圍 62
4.4 實際影像平滑約制補償值函數設定實驗 63
4.4.1 實際影像函數補償特性分析 73
第五章 結論與建議 89
5.1 結論 89
5.2 建議與未來展望 89
參考文獻 91
dc.language.isozh-TW
dc.subject補償值函數最小值設定模式zh_TW
dc.subject半全域匹配法zh_TW
dc.subject互資訊zh_TW
dc.subject補償函數zh_TW
dc.subject匹配值加總zh_TW
dc.subjectCost aggregationen
dc.subjectSemi-global matching algorithmen
dc.subjectSetting mode of minimum of the penalty functionen
dc.subjectMutual informationen
dc.subjectPenalty functionen
dc.title基於互資訊之半全域匹配補償函數特性及作業參數擬定初探zh_TW
dc.titlePreliminary Study on Analyzing as well as Tuning Penalty Parameters of Mutual Information Based Semi-Global Matchingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡展榮,邱式鴻
dc.subject.keyword半全域匹配法,互資訊,補償函數,匹配值加總,補償值函數最小值設定模式,zh_TW
dc.subject.keywordSemi-global matching algorithm,Mutual information,Penalty function,Cost aggregation,Setting mode of minimum of the penalty function,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
7.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved