請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55766完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Chi-Yuan Chang | en |
| dc.contributor.author | 張集淵 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:08:11Z | - |
| dc.date.available | 2016-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | Chapter 1
[1] C. D. Dimitrakopoulos, D. J. Mascaro, IBM J. Res. Dev. 2001, 45, 11-27. [2] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Advanced Functional Materials 2005, 15, 1617-1622. [3] Z. Y. Yin, S. Y. Sun, T. Salim, S. X. Wu, X. Huang, Q. Y. He, Y. M. Lam, H. Zhang, ACS Nano 2010, 4, 5263. [4] Hyesung Park, Jill A Rowehl, Ki Kang Kim, Vladimir Bulovic and Jing Kong, Nanotechnology 2010, 21, 1-6. [5] Yu Wang, Shi Wun Tong, Xiang Fan Xu, Barbaros Ozyilmaz, and Kian Ping Loh, Adv. Mater. 2011, 23, 1514–1518. [6] Yu-Ying Lee, Kun-Hua Tu, Chen-Chieh Yu, Shao-Sian Li, Jeong-Yuan Hwang, Chih-Cheng Lin, Kuei-Hsien Chen, Li-Chyong Chen, Hsuen-Li Chen, and Chun-Wei Chen, ACS Nano. 2011, 5, 6564-6570. Chapter 2 [1] J. Rostalski, D. Meissner, Solar Energy Materials and Solar cells 2000, 61, 87. [2] www.newport.com/Introduction-to-solar-Radiation/411919/1033/catalog.aspx [3] Serap Gu‥nes, Helmut Neugebauer, and Niyazi Serdar Sariciftci, Chem. Rev. 2007, 107, 1324−1338 [4] J. F. Randall, J. Jacot, Renewable Energy 2003, 28, 1851–1864. [5] Boyuan Qi and Jizheng Wang, J. Mater. Chem., 2012, 22, 24315–24325 [6] Harald Hoppe and Niyazi Serdar Sariciftci, J. Mater. Res., 2004, 19, 7 [7] Naoki Koide, Ashraful Islam, Yasuo Chiba, Liyuan Han, J. Photochem. Photobiol., A 2006, 182, 296-305. [8] M. Bashahu, A. Habyarimana, Renewable Energy 1995, 6, 129-138 Chapter 3 [1] G.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York and London (1981). [2] http://portal.tugraz.at/portal/page/portal/felmi/research [3] www.nrel.gov/docs/legosti/old/8666.pdf [4] Irene Gonzalez-Valls and Monica Lira-Cantu, Energy Environ. Sci., 2009, 2, 19–34. [5] Maria Quintana, Tomas Edvinsson, Anders Hagfeldt, and Gerrit Boschloo, J. Phys. Chem. C, 2007, 111, 1035. [6] J. Meyer, K. Zilberberg, T. Riedl and A. Kahn, J. Appl. Phys., 2011, 110, 033710. [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. [8] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth ,T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308. Chapter 4 [1] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425–2427. [2] F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, Solar Energy Materials and Solar Cells 2009, 93, 422–441. [3] F. C. Krebs, Sol. Energy Mater. Sol. Cells 2009, 93, 394. [4] F. C. Krebs, S. A. Gevorgyan, J. Alstrup, Journal of Materials Chemistry 2009, 19, 5442–5451. [5] G. Li, Shrotriya, J. S. Huang, Y. Yao, T. moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864–868. [6] V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Func. Mater. 2006, 16, 699–708. [7] Ryu MS, Cha HJ, Jang J. Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency. Curr Appl Phys 2010, 10, S206–9. [8] Moule AJ, Meerholz K. Controlling morphology in polymer–fullerene mixtures. Adv. Mater. 2008, 20, 240–5. [9] Kim K, Liu J, Namboothiry MAG, Carroll DL. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 2007, 90, 163511–3. [10] Geim, A. K., Science 2009, 324, 1530–1534. [11] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 2008, 146, 351–355. [12] Arco, L. G. D., Zhang, Y., Schlenker, C. W., Ryu, K., Thompson, M. E., Zhou, C. W., ACS Nano 2010, 4, 2865–2873. [13] Zhike Liu , Jinhua Li , and Feng Yan, Adv. Mater. 2013, 25, 4296-4301. [14] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, A. K. Geim, Science 2012, 335, 442. [15] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706. [16] X. Li, W. W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312. [17] Huihu Wang , Changsheng Xie , Wei Zhang, Shuizhou Cai , Zhihong Yang , Yanghai Gui, J. Hazard. Mater. 2007, 141, 645-652. [18] X. Li, W. W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312. [19] Liang Shen, Xin-Dong Zhang, Wen-Bin Guo, Cai-Xia Liu, Wei Dong and Sheng-Ping Ruan, Mater. Sci. Forum. 2011, 663-665, 865. [20] Gang Li, Vishal Shrotriya, Jinsong Huang, Yan Yao, Tom Moriarty, Keith Emery and Yang Yang, Nat. Mater. 2005, 4, 864–868. [21] Yu Wang, Shi Wun Tong, Xiang Fan Xu, Barbaros Ozyilmaz, and Kian Ping Loh, Adv. Mater. 2011, 23, 1514-1518. [22] Yumeng Shi, Ki Kang Kim, Alfonso Reina, Mario Hofmann, Lain-Jong Li, and Jing Kong, ACS Nano 2010, 4, 2689–2694. [23] Zhike Liu, Jinhua Li, Zhen-Hua Sun, Guoan Tai, Shu-Ping Lau, and Feng Yan, Adv. Mater. 2012, 6, 810-818. [24] Toshiyuki Tamai, Mitsuru Watanabe, Yoshiro Hatanaka, Hiroyuki Tsujiwaki, Noboru Nishioka, and Kimihiro Matsukawa, Langmuir 2008, 24, 14203–14208. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55766 | - |
| dc.description.abstract | 此篇論文的主要研究,是以無機混合有機的太陽能電池。無機混有機的太陽能電池製作方式,是先在清洗後的ITO玻璃基板上,以旋轉塗佈方式鋪上ZnO,接著再以旋轉塗佈的方式鋪上高分子材料P3HT/PCBM作為主動層,再鋪上V2O5,接著轉印上石墨烯作為上電極製作出可從雙面吸收光能的太陽能電池。除此之外,我們在其中摻雜金的奈米粒子,藉由其表面電漿共振效應增加整體效率,以此結構做出的太陽能電池特點在其製程為全溶液製程,製作成本低廉,且實用性極高。
根據分析發現,元件效率的提升最主要的原因是藉由金的奈米粒子造成的表面電漿共振效應,使得載子較容易自元件中導出,元件因此有較高的光電流及整體效率,依照此結論我們可以更進一步的製造出更有效率的有機太陽能電池。 | zh_TW |
| dc.description.abstract | This thesis mainly focuses on the research of inorganic/organic hybrid solar cells. The inorganic/organic hybrid solar cells are made from ZnO nanoparticles, V2O5, and P3HT/PCBM. After cleaning the ITO glass, ZnO nanoparticles were spin coated on the silver nanowires followed by spin-coating P3HT/PCBM as the active layer. After that, V2O5 was deposited on the active layer through spin-coating method as well. We then transferred the CVD graphene onto the V2O5 layer as the top electrode to make the solar cell that can absorb luminous energy from double sides. Further, we doped the gold nanoparticles into the V2O5 layer to improve the performance of the photovoltaic devices by taking advantage of the surface plasmon resonance effect of the metallic nanospheres..
This device features for all solution process, low cost, and diverse applications. According to our study, the main reasons for the increased efficiency of solar cells can be attributed to the surface plasmon resonance effect from the Au nanoparticles, exporting more charges out of the active layer. An improved device performance is thus achieved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:11Z (GMT). No. of bitstreams: 1 ntu-103-R01245014-1.pdf: 1633240 bytes, checksum: 7b252a56add0269aa2c616694b5770a8 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
1. Introduction …………….…………………………………………..1 Reference ………………………………………………………………4 2. Theoretical Background ……………….…………………………5 2.1 The principle of solar cell …………………………...………………5 2.1.1 Solar Radiation ..…………………………………………………5 2.1.2 Photovoltaic effect…………………………………..……………7 2.1.3 Open circuit voltage.………………………………………...……9 2.1.4 Short circuit current………………………………….…..………10 2.1.5 Filling factor&efficiency .……………………..…..……………11 2.1.6 Equivalent circuit of a Solar Cell ………………………………12 2.1.7 Localized Surface Plasmon Resonance Effect on Metal Nanoparticles……………………………………………………13 Reference. ……….……………………………….……………………17 3. Equipment and Material Design…………………..……………18 3.1 Equipment ………………………….………………………………18 3.1.1 Scanning electron microscopy.…………………………………18 3.1.2 Thermal evaporation ..………………….…………………….…20 3.1.3 Solar simulator……………………………………………….…22 3.2 Material design ………………………………………………….…22 3.2.1 ZnO nanoparticles………………………………………………22 3.2.2 V2O5……………….……………………………………………24 3.2.3 Organic materials.………………………………………………24 3.2.4 Graphene………………………………………………………..25 Reference………………………………………………………………27 4. Experimental Results and Discussion……………......................28 4.1 Introduction……………………………………………………..…28 4.2 Experiment..……………………………………………………….29 4.3 Results and discussion……………………………………………..31 4.4 Summary …………….……………………………………………34 4.5 Figure..…………………………………………………………….35 Reference ………………….…………………………………………..38 5. Conclusion…………………………………………………………41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | organic solar cell | en |
| dc.subject | graphene electrode | en |
| dc.title | 雙面照光的有機太陽能電池 | zh_TW |
| dc.title | High performance organic solar cells with dual side photon harvest capability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許芳琪(Fang-Chi Hsu),李亞儒(Ya-Ju Lee) | |
| dc.subject.keyword | 石墨烯,有機太陽能電池, | zh_TW |
| dc.subject.keyword | graphene electrode,organic solar cell, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
