Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文正(Wen-Cheng Liao)
dc.contributor.authorLi-Wei Tsengen
dc.contributor.author曾笠維zh_TW
dc.date.accessioned2021-06-16T05:08:08Z-
dc.date.available2015-08-26
dc.date.copyright2014-08-26
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citation[1] (財)国土開發技術研究センター,“建設省総合技術開發プロジェクト:鉄筋コンクリート造建築物之超軽量化˙超高層化技術の開發(New RC)” ,平成四年度構造性能分科会報告書,1993。
[2] Aoyama, H., “Design of Modern High-rise Reinforced Concrete Structures,” Imperial College, London.
[3] Sugano, S., “Application of High Strength and High Performance Concrete in Seismic Region,” Invited Lecture in the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, pp. 27-29, October 2008.
[4] Sugano, S., Kimura, H., and Shirai, K., “Study of New RC Structures Using Ultra-High-Strength Fiber-Reinforced Concrete (UFC)-The Challenge of Applying 200MPa UFC to Earthquake Resistant Building Structures”. Journal of advanced concrete technology, 5(2), pp. 133-147, 2007.
[5] ACI Committee, 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, 2011.
[6] Canadian Standards Association, “Design of Concrete Structures,” CSA A23.3-04, 2004.
[7] 紀偉凡,「高強度鋼筋混凝土柱耐震圍束設計之研究」,碩士論文國立台灣大學土木工程學系,台北,2012。
[8] 張豐展,「高強度鋼筋混凝土柱圍束效應研究」,碩士論文,國立台灣大學土木工程學系,台北,2010。
[9] 中國土木水利工程學會,「混凝土工程設計與解說(土木 401-100)」,科技圖書,2011.
[10] 黃冠傑,¬「鋼筋混凝土柱耐震圍束設計之研究」,碩士論文,國立台灣大學土木工程學系,台北,2013。
[11] ACI Innovation Task Group 4, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),” American Concrete Institute, 2007.
[12] ACI Committee, 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary,” American Concrete Institute, Farmington Hills, Mich., 2014(in review process).
[13] Sezen, H., and Moehle, J. P., “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineering c ASCE, 2004.
[14] Standards Association of New Zealand, “Concrete Design Standard, NZS 3101:2006, Part 1,” and “Commentary on the Concrete Design Standard, NZS 3101:2006, Part 2,” Wellington, New Zealand, 2006.
[15] Whitney, C. S., “Design of Reinforced Concrete Members Under Flexure or Combined Flexure and Direct Compression,” Journal of American Concrete Institute, Vol. 33, 1937.
[16] Fanella, David A., and Naaman, Antoine E., “Stress-Strain Properties of Fiber Reinforced Mortar in Compression,” J. Am. Concr. Inst., 82(4), 475-483, 1985.
[17] Hsu, L. S., and Hsu, C. T., “Stress-Strain Behavior of Steel-Fiber High-Strength Concrete under Compress.” ACI Structural Journal, July-August, 1994.
[18] Song, P. S., and Hwang, S., “Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete.” Construction and Building Materials, Vol. 18, pp. 669-673, 2004.
[19] Ou, Y. C., Tsai, M. S., Liu, K. Y., and Chang, K. C., “Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index,” J. Mater. Civ. Eng. 24(2) pp.207-215, 2012.
[20] Lee, H. H. “Shear strength and behavior of steel fiber reinforced concrete columns under seismic loading.” Engineering structures, 29(7), 1253-1262, 2007.
[21] Aslani, F., Nejadi, S., and Samali, B., “Energy dissipation in self-compacting concrete with or without fibers in compression,” Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, Illinois, USA, May 12–15, 2013.
[22] 郭耀仁,「高強度鋼纖維混凝土的力學性質與圍束效應之研究」,碩士論文,國立台灣大學土木研究所,2012。
[23] Xu, B., Ju, J. W., and Shi, H. S., “Progressive Micromechanical Modeling for Pullout Energy of Hooked-end Steel Fiber in Cement-based Composites,” SAGE. International Journal of Damage Mechanics, 2011.
[24] Li, V. C., Wang, Y., and Backer, S., “Effect of Inclining Angle, Bundling and Surface Treatment on Synthetic Fiber Pull-out from A Cement Matrix,” Journal of Composites, 48 Vol. 21, No. 2, pp. 132-140, 1990.
[25] Li, V. C., “Postcrack Scaling Relations for Fiber Reinforced Cementitious Composites,” ASCE Journal of Materials in Civil Engineering, Vol. 4, No. 1, pp. 41-57, 1992.
[26] Xu, B., Ju, J. W., and Shi, H. S., “Micromechanical Modeling of Fracture Energy for Hooked-End Steel Fiber Reinforced Cementitious Composites,” SAGE, International Journal of Damage Mechanics, 2012.
[27] Oluokun, F. A., “Prediction of Concrete Tensile Strength from Its Compressive Strength: Evaluation of Existing Relations for Normal Weight Concrete,” ACI Mechanicals Journal, Vol. 88, No. 3, pp. 302-309, 1991.
[28] Alwan, J. M., Namman, A. E., and Guerrero, P., “Effect of Mechanical Clamping on the Pull-out Response of Hooked Steel Fibers Embedded in Cementitious Composites,” Concrete Science and Engineering, Vol. 1, No. 1, pp. 15-25, 1999.
[29] Foster, S. J., Liu, J., and Sheikh, S. A., “Cover Spalling in HSC Columns Loaded in Concentric Compression,” Journal of Structural Engineering, ASCE, Vol. 124, No. 12, pp. 1431-1437, 1998
[30] Razvi, S. R., and Saateioglu, M., “Tests of high strength concrete columns under concentric loading,” Rep, OCEERC 96-03, Dept. of Civ, Engrg., University of Ottawa, Ottawa, 1996
[31] Sheikh, S. A., and Uzumeri, S.M., “Strength and ductility of tied concrete columns,” J. Struct. Div., A.S.C.E., 106(5), 1079-1102, 1980.
[32] 劉恩睿,「高強度鋼纖維鋼筋混凝土柱的軸壓行為與圍束效應之研究」,碩士論文,國立台灣大學土木研究所,2013。
[33] Berry, M., Parrish, M., and Eberhard, M., “PEER Structural Performance Database User’s Manual,” Pacific Earthquake Engineering Research Center Report, Version 1.0, University of California, Berkeley, February 2004.
[34] Lima Junior, H. C., and Giongo, J. S., “Steel-fibre high-strength concrete prisms confined by rectangular ties under concentric compression,” Materials and Structures, Volume 37, Issue 10, pp 689-697, December 2004.
[35] Saatcioglu, M. and Razvi, S. R., “High-Strength Concrete Columns with Square Sections under Concentric Compression,” ASCE Journal of Structural Engineering, 52 Vol. 124, No. 12, pp. 1438-1447, 1998.
[36] Cusson, D. and Paultre, P., “High-Strength Concrete Columns Confined by Rectangular Ties,” ASCE Journal of Structural Engineering, Vol. 120, No. 3, pp. 783-795, 1994.
[37] Lee, H. J., Wang, R. J. , Chen, C. C., Tao, C. C., and Chen, C. W.,” Axial Load Behavior of Large-Scale High-strength Concrete Tied Columns,” Proceeding of 2008 KCI-JCI-TCI Symposium, Seoul, pp.80-89, Nov.2008.
[38] Ramesh, K., Seshu, D.R., and Prabhakar, M., “Constitutive behaviour of confined fibre reinforced concrete under axial compression,” Cement & Concrete Composites 25 pp.343–350, 2003.
[39] Aoude, H., Cook, W. D., and Mitchell, D., “Behavior of Columns Constructed with Fibers and Self-Consolidating Concrete.” ACI Structural Journal, Vol. 106. Issue 3. P349-357, May 1 2009.
[40] Campione, G., Fossetti, M., and Papia, M., “Behavior of Fiber-Reinforced Concrete Columns under Axially and Eccentrically Compressive Loads.” ACI Structural Journal, Vol. 107 Issue 03. P272-281, May 1 2010.
[41] Riederer, K.A., “Assessment of Confinement Models for Reinforced Concrete Columns Subjected to Seismic Loading,” Master thesis, University of British Columbia, Vancouver, BC, Canada, pp.211, December 2006.
[42] 林安理,「中剪跨鋼纖維混凝土梁剪力強度預測研究」,碩士論文,國立台灣大學土木研究所,2013。
[43] ACI 374 Committee, “374.1-05:Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary,” American Concrete Institute, Farmington Hills, Mich., 2006, 9pp
[44] Elwood, K. J., and Moehle, J. P., “An Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol. 102, No. 4, 2005.
[45] 陳盈璋,「高強度鋼筋混凝土柱耐震圍束效應之研究」,碩士論文,國立台灣大學土木工程學系,2011。
[46] 王俊傑,「不同箍筋型式之New RC 柱反覆側推行為研究」,碩士論文,國立台灣大學土木工程學系,2014。
[47] CNS 2111,「金屬材料拉伸試驗法」,中華民國國家標準,1996。
[48] CNS 2112,「金屬材料拉伸試驗試片」,中華民國國家標準,2005。
[49] ASTM C39/C39M, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, 2009.
[50] Federal Emergency Management Agency, American Society of Civil Engineers, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356),” Federal Emergency Management Agency, 2000.
[51] ASCE/SEI, “Seismic Rehabilitation of Existing Buildings,” ASCE/SEI 41-06, American Society of Civil Engineers, Reston, Virginia, 2006, 411 pp.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55761-
dc.description.abstract國內的建築物中,鋼筋混凝土結構(Reinforced Concrete, RC)佔了絕大多數,主要因為RC結構有下列優點:耐久性佳、易維護,與成本低。隨著時代的演進,高樓層建築是現今的趨勢。隨著樓層的提高,位於底層的柱需承受整體結構物荷重產生的高軸力,若用傳統的RC結構,勢必得放大低樓層柱的斷面。因此日本在1988年推出為期5年的New RC Project,以提高材料強度的方法,減少材料的用量,使得結構物輕量化。高強度材料的RC結構,不僅可以降低柱斷面的尺寸、減量材料的用量與成本,也提升建築物的使用空間。
然而高強度的材料的脆性行為是其隱憂,由於高強度混凝土開裂時,裂縫會直接通過粗骨材與砂漿,因此一旦到達極限強度,結構物會立即破壞,造成嚴重的損害。除此之外,台灣位處地震發生頻繁之地震帶,結構物必須具有一定的韌性,越高的韌性越能折減地震力。為了提高結構物韌性表現,在傳統RC結構中添加新材料便是方法之一。根據文獻顯示,鋼纖維能提高混凝土材料的韌性以及剪力抗性,減少橫向箍筋量的需求,降低鋼筋籠綁紮的繁瑣。而且纖維不僅能預防早期保護層剝落,抑制裂縫生長,並會在其他部份產生多重裂縫,避免瞬間破壞的發生。
本研究主要探討在雙曲率反覆側推行為下,高強度鋼纖維鋼筋混凝土柱的行為表現,並與高強度鋼筋混凝土柱進行比較。主要分為兩大主軸,其一為「高強度混凝土與高強度鋼纖維混凝土比較」,探討相同混凝土設計強度下,一般混凝土與鋼纖維混凝土的行為差異。其二為「以鋼纖維取代橫向箍筋之評估」,以放大箍筋間距的方式,探討鋼纖維與橫向箍筋的取代關係,間距最大到規範訂定剪力鋼筋間距最嚴苛的標準,也就是一半的斷面深度。另外針對鋼筋混凝土柱以及鋼纖維鋼筋混凝土柱之韌性指數進行回歸,提出預測公式。並且根據預測公式建立圍束效應與反覆側推行為之關係式,未來具備試體設計斷面,便可以此關係式判斷反覆側推實驗結果能否通過側力衰減至80%時,層間變位角達到3%之標準。
zh_TW
dc.description.abstractThere are several advantages of reinforced concrete. For example, reinforced concrete is durable. Also, the buildings built by reinforced concrete are easy to conserve and maintain the structure. Moreover, the cost is low to build the buildings with reinforced concrete. It is a trend that people start to build high-rise buildings. The higher the building is, the more axial load of the columns at the bottom sustain. If the high- rise buildings are built with the traditional RC structure, the lower floors’ dimension must be enlarged. Therefore, in 1988, New RC project was proposed in Japan. The purposes of the project were increasing the strength of the construction materials and reducing the amount of the materials. With high strength material, the size of columns’ dimension is decreased, also the available space of buildings is increased.
However, the brittleness is the disadvantage of the high strength materials. Once the maximum concrete strength is reached, the construction will immediately be destroyed. Besides, Taiwan is located in a seismic belt, so the toughness is required for most of the buildings. The higher the toughness, the more it can reduce the strength caused by the earthquake. In order to increase the toughness in a traditional construction, adding new materials is one of the methods. According to the references, the toughness and the shear resistance in concrete materials are increased by adding the steel fiber into concrete. Also, the amount of the transverse steel is reduced and the process of tying steel cage is simplified. Moreover, adding the steel fiber can not only prevent the early cover spalling, but also restrain the cracks’ development that may cause immediate destruction.
The performance of high-strength steel fiber reinforced concrete columns under the condition of double curvature cyclic loading test is investigated in this study. The study can be divided into two parts. The first part is using the same designed strength to compare the differences between the original concrete and steel fiber concrete. The second part is the feasibility of substitution of the steel fiber for transverse steel based on the method that enlarging the spacing between transverse steel. Furthermore, not only the regression between the toughness of RC columns and the toughness of steel fiber RC columns was proposed in the study, but also the prediction formula. In addition, the relationship between the confinement effect that built by the prediction formula and the cyclic loading test is proposed in the study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:08:08Z (GMT). No. of bitstreams: 1
ntu-103-R01521232-1.pdf: 30398024 bytes, checksum: db8ef33953ebfb74073a6ed01f13b8e6 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
表目錄 ix
圖目錄 x
照片目錄 xiv
參數對照表 xv
第一章、緒論 1
1.1 動機與目的 1
1.2 研究範圍與內容 3
1.3 研究流程 4
第二章、文獻回顧 5
2.1 圍束設計規範介紹 5
2.1.1 美國混凝土協會 ACI 318-11[5] 5
2.1.2 加拿大規範 CSA A23.3-04[6] 6
2.1.3 NCREE建議公式[7] 8
2.1.4 美國混凝土協會 ACI 318-14[12] 9
2.2 剪力設計規範介紹 11
2.2.1 美國混凝土協會 ACI 318-11[5] 11
2.2.2 Sezen 剪力預測公式[13] 13
2.3 撓曲強度 15
2.4 鋼纖維混凝土力學性質 18
2.4.1 鋼纖維添加至混凝土的力學性質影響 18
2.4.2 韌性指數定義 24
2.5 端鉤型鋼纖維拉拔能量 26
2.5.1 端鉤型鋼纖維拉拔機制 26
2.5.2 端鉤型鋼纖維拉拔能量預測模型 27
2.5.3 等效握裹強度 34
2.6 鋼纖維混凝土韌性參數 35
2.7 鋼筋混凝土柱韌性參數 36
2.7.1 鋼筋混凝土柱的圍束效應 36
2.8 韌性比回歸公式 39
2.8.1 鋼纖維混凝土的韌性比回歸公式 39
2.8.2 鋼筋混凝土的韌性比回歸公式 40
2.8.3 鋼纖維鋼筋混凝土柱的韌性比回歸公式 42
2.9 破壞模式 44
2.10 資料庫蒐集 46
第三章、實驗計畫 47
3.1 試驗背景 47
3.2 試體設計 47
3.2.1 設計細節 48
3.2.2 試體編號 53
3.3 試驗材料與配比 54
3.3.1 試驗材料 54
3.3.2 試驗配比 56
3.4 試驗儀器與設備 57
3.4.1 測試系統 57
3.4.2 內部量測系統 63
3.4.3 外部量測系統 71
3.4.4 其他 73
3.5 試體製作 75
3.5.1 應變計黏貼 75
3.5.2 試體澆置 77
3.6 破壞模式預測 80
3.7 測試流程 86
3.7.1 實驗前置 86
3.7.2 實驗進行 89
3.8 韌性比回歸公式 90
3.8.1 高強度鋼筋混凝土柱 90
3.8.2 高強度鋼纖維鋼筋混凝土柱 94
3.9 韌性比與反覆側推實驗修正公式 98
第四章、試驗結果 100
4.1 材料試驗 100
4.1.1 高強度鋼筋 100
4.1.2 高強度鋼纖維混凝土 107
4.2 反覆側推實驗 110
4.2.1 重要參數點 110
4.2.2 位移與遲滯迴圈 112
4.2.3 裂縫發展 122
4.2.4 鋼筋降伏時間 126
4.2.5 曲率量測 127
4.2.6 剪力位移量測 130
第五章、結果與討論 133
5.1 韌性比回歸公式驗證 133
5.1.1 高強度鋼筋混凝土柱 133
5.1.2 高強度鋼纖維鋼筋混凝土柱 134
5.2 韌性比與反覆側推實驗修正公式驗證 135
5.3 反覆側推實驗結果比較 136
5.3.1 位移與遲滯迴圈比較 136
5.3.2 消能機制與勁度衰減比較 146
5.3.3 鋼筋混凝土柱韌性比預測值與反覆側推實驗目標性能點比較 155
第六章、結論與建議 156
6.1 結論 156
6.2 建議 157
參考文獻 159
附錄A應變計分析 163
附錄B反覆側推實驗照片 210
附錄C混凝土材料檢驗報告 219
附錄D試體設計圖說 230
附錄E反覆側推實驗資料庫(橫箍柱) 235
dc.language.isozh-TW
dc.subject鋼纖維zh_TW
dc.subject高軸力zh_TW
dc.subject圍束效應zh_TW
dc.subjectNew RCzh_TW
dc.subject反覆側推實驗zh_TW
dc.subjectNew RCen
dc.subjectsteel fiberen
dc.subjecthigh axial loaden
dc.subjectconfinementen
dc.subjectcyclic loading testen
dc.title以鋼纖維取代橫向箍筋於New RC柱之應用評估zh_TW
dc.titleFeasibility Study of Steel Fibers as a Substitute for Transverse Reinforcement in New RC Columnsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃世建(Shyh-Jiann Hwang),歐昱辰(Yu-Chen Ou)
dc.subject.keyword鋼纖維,高軸力,圍束效應,New RC,反覆側推實驗,zh_TW
dc.subject.keywordsteel fiber,high axial load,confinement,New RC,cyclic loading test,en
dc.relation.page238
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
29.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved