Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜昱至(Yu-Chih, Chiang)
dc.contributor.authorChing-Ching Wongen
dc.contributor.author黃菁菁zh_TW
dc.date.accessioned2021-06-16T05:08:07Z-
dc.date.available2019-10-15
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citation參考資料
1. Hargreaves, K.M., H.E. Goodis, and F.R. Tay, Seltzer and Bender's dental pulp. 2002: Quintessence Publishing Company.
2. Sloan, A.J. and A.J. Smith, Stimulation of the dentine-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Arch Oral Biol, 1999. 44(2): p. 149-56.
3. Sveen, O.B. and R.R. Hawes, Differentiation of new odontoblasts and dentine bridge formation in rat molar teeth after tooth grinding. Arch Oral Biol, 1968. 13(12): p. 1399-409.
4. Butler, W.T., H.H. Ritchie, and A. Bronckers, Extracellular matrix proteins of dentine. Dental enamel, 1997. 1996: p. 107.
5. Fitzgerald, M., D.J. Chiego, Jr., and D.R. Heys, Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol, 1990. 35(9): p. 707-15.
6. Murray, P.E., et al., Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit Rev Oral Biol Med, 2002. 13(6): p. 509-20.
7. Hannahan, J.P. and P.D. Eleazer, Comparison of success of implants versus endodontically treated teeth. J Endod, 2008. 34(11): p. 1302-5.
8. Caplan, D.J., et al., Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent, 2005. 65(2): p. 90-6.
9. Randow, K. and P.O. Glantz, On cantilever loading of vital and non-vital teeth. An experimental clinical study. Acta Odontol Scand, 1986. 44(5): p. 271-7.
10. Zhang, W. and P.C. Yelick, Vital pulp therapy-current progress of dental pulp regeneration and revascularization. Int J Dent, 2010. 2010: p. 856087.
11. Plotino, G., et al., Nonvital tooth bleaching: a review of the literature and clinical procedures. J Endod, 2008. 34(4): p. 394-407.
12. Cvek, M., Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol, 1992. 8(2): p. 45-55.
13. Stanley, H.R., Pulp capping: conserving the dental pulp--can it be done? Is it worth it? Oral Surg Oral Med Oral Pathol, 1989. 68(5): p. 628-39.
14. Trope, M., Regenerative potential of dental pulp. J Endod, 2008. 34(7 Suppl): p. S13-7.
15. Tziafas, D., A.J. Smith, and H. Lesot, Designing new treatment strategies in vital pulp therapy. J Dent, 2000. 28(2): p. 77-92.
16. Glickman, G.N. and N.S. Seale, AAPD and AAE symposium overview: emerging science in pulp therapy--new insights into dilemmas and controversies. Pediatr Dent, 2008. 30(3): p. 190-1.
17. Kakehashi, S., H.R. Stanley, and R.J. Fitzgerald, The Effects of Surgical Exposures of Dental Pulps in Germ-Free and Conventional Laboratory Rats. Oral Surg Oral Med Oral Pathol, 1965. 20: p. 340-9.
18. Rutherford, B. and M. Fitzgerald, A new biological approach to vital pulp therapy. Crit Rev Oral Biol Med, 1995. 6(3): p. 218-29.
19. Jontell, M. and G. Bergenholtz, Accessory cells in the immune defense of the dental pulp. Proc Finn Dent Soc, 1992. 88 Suppl 1: p. 344-55.
20. Turner, D., C. Marfurt, and C. Sattelberg, Demonstration of physiological barrier between pulpal odontoblasts and its perturbation following routine restorative procedures: a horseradish peroxidase tracing study in the rat. Journal of dental research, 1989. 68(8): p. 1262-1268.
21. Zander, H., Reaction of the pulp to calcium hydroxide. Journal of Dental Research, 1939. 18(4): p. 373-379.
22. Hess, W., The treatment of teeth with exposed healthy pulps. 1950.
23. Cox, C., et al., Tunnel defects in dentin bridges: their formation following direct pulp capping. Operative dentistry, 1995. 21(1): p. 4-11.
24. Sangwan, P., et al., Tertiary dentinogenesis with calcium hydroxide: A review of proposed mechanisms. International endodontic journal, 2013. 46(1): p. 3-19.
25. Torabinejad, M., et al., Physical and chemical properties of a new root-end filling material. J Endod, 1995. 21(7): p. 349-53.
26. Pitt Ford, T.R., et al., Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1995. 79(6): p. 756-763.
27. Nakashima, M. and A. Akamine, The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of endodontics, 2005. 31(10): p. 711-718.
28. Lieberman, J.R., A. Daluiski, and T.A. Einhorn, The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am, 2002. 84-A(6): p. 1032-44.
29. Zhang, W., X.F. Walboomers, and J.A. Jansen, The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF‐β1. Journal of Biomedical Materials Research Part A, 2008. 85(2): p. 439-444.
30. Dobie, K., et al., Effects of alginate hydrogels and TGF-β1 on human dental pulp repair in vitro. Connective tissue research, 2002. 43(2-3): p. 387-390.
31. Sloan, A., R. Rutherford, and A. Smith, Stimulation of the rat dentine–pulp complex by bone morphogenetic protein-7 in vitro. Archives of Oral Biology, 2000. 45(2): p. 173-177.
32. Lovschall, H., O. Fejerskov, and A. Flyvbjerg, Pulp-capping with recombinant human insulin-like growth factor I (rhIGF-I) in rat molars. Advances in Dental Research, 2001. 15(1): p. 108-112.
33. Tziafas, D., A. Smith, and H. Lesot, Designing new treatment strategies in vital pulp therapy. Journal of dentistry, 2000. 28(2): p. 77-92.
34. Rutherford, R.B., et al., The time-course of the induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Archives of oral biology, 1994. 39(10): p. 833-838.
35. Rutherford, R.B., et al., Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Archives of oral biology, 1993. 38(7): p. 571-576.
36. Tziafas, D., et al., Dentin regeneration in vital pulp therapy: design principales. Advances in dental research, 2001. 15(1): p. 96-100.
37. Finkelman, R.D., et al., Quantitation of growth factors IGF‐I, SGF/IGF‐II, and TGF‐β in human dentin. Journal of Bone and Mineral Research, 1990. 5(7): p. 717-723.
38. Zhao, S., et al., Ultrastructural localisation of TGF-β exposure in dentine by chemical treatment. The Histochemical Journal, 2000. 32(8): p. 489-494.
39. Begue-Kirn, C., et al., Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol, 1992. 36(4): p. 491-503.
40. Melin, M., et al., Effects of TGFβ 1 on Dental Pulp Cells in Cultured Human Tooth Slices. Journal of dental research, 2000. 79(9): p. 1689-1696.
41. Liang, R.-F., S. Nishimura, and S. Sato, Effects of epidermal growth factor and transforming growth factor-β on insulin-induced differentiation in rat dental pulp cells. Archives of oral biology, 1992. 37(10): p. 789-795.
42. Nakashima, M., The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Archives of oral biology, 1992. 37(3): p. 231-236.
43. Shirakawa, M., et al., Transforming growth factor-beta-1 reduces alkaline phosphatase mRNA and activity and stimulates cell proliferation in cultures of human pulp cells. Journal of dental research, 1994. 73(9): p. 1509-1514.
44. Laurent, P., J. Camps, and I. About, Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J, 2012. 45(5): p. 439-48.
45. Hu, C.-C., et al., Reparative dentin formation in rat molars after direct pulp capping with growth factors. Journal of endodontics, 1998. 24(11): p. 744-751.
46. Nishikawa, H., et al., Sulfated glycosaminoglycan synthesis and its regulation by transforming growth factor-β in rat clonal dental pulp cells. Journal of endodontics, 2000. 26(3): p. 169-171.
47. Magne, D., et al., Development of an odontoblast in vitro model to study dentin mineralization. Connective tissue research, 2004. 45(2): p. 101-108.
48. Dijke, P.t. and C.S. Hill, New insights into TGF-β–Smad signalling. Trends in biochemical sciences, 2004. 29(5): p. 265-273.
49. Nakashima, M. and A. Akamine, The Application of Tissue Engineering to Regeneration of Pulp and Dentin in Endodontics. J Endod, 2005. 31(10): p. 711-718.
50. Matsushita, K., et al., The role of vascular endothelial growth factor in human dental pulp cells: induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res, 2000. 79(8): p. 1596-603.
51. I, D.A., et al., Vascular endothelial growth factor enhances in vitro proliferation and osteogenic differentiation of human dental pulp stem cells. J Biol Regul Homeost Agents, 2011. 25(1): p. 57-69.
52. Kim, J.Y., et al., Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A, 2010. 16(10): p. 3023-31.
53. Yuan, Z., et al., Biomaterial selection for tooth regeneration. Tissue Engineering Part B: Reviews, 2011. 17(5): p. 373-388.
54. Bose, S. and S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta biomaterialia, 2012. 8(4): p. 1401-1421.
55. Park, J.B. and J.D. Bronzino, Biomaterials: principles and applications. 2002: crc press.
56. Vallet‐Regi, M. and E. Ruiz‐Hernandez, Bioceramics: from bone regeneration to cancer nanomedicine. Advanced Materials, 2011. 23(44): p. 5177-5218.
57. Thamaraiselvi, T. and S. Rajeswari, Biological evaluation of bioceramic materials-a review. Carbon, 2004. 24(31): p. 172.
58. Shackelford, J.F. Bioceramics-An Historical Perspective. in Materials science forum. 1998. Trans Tech Publ.
59. Hench, L.L., Bioceramics and the origin of life. Journal of biomedical materials research, 1989. 23(7): p. 685-703.
60. Perry, C.R., Bone repair techniques, bone graft, and bone graft substitutes. Clinical orthopaedics and related research, 1999. 360: p. 71-86.
61. Ratner, B.D., et al., Biomaterials science: an introduction to materials in medicine.
62. Zhou, H. and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 2011. 7(7): p. 2769-2781.
63. Chen, F.-M. and Y. Jin, Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Engineering Part B: Reviews, 2010. 16(2): p. 219-255.
64. Thomas, M.V. and D.A. Puleo, Calcium sulfate: Properties and clinical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009. 88(2): p. 597-610.
65. Thomas, M.V., D.A. Puleo, and M. Al-Sabbagh, Calcium sulfate: a review. Journal of long-term effects of medical implants, 2005. 15(6).
66. Devine, T.R., et al., Controlled dissolution pellet containing calcium sulfate. 1997, Google Patents.
67. 莫翔宇, 雙相磷酸鈣/硫酸鈣複合骨水泥性質之研究. 2011.
68. Simmons, C.A., et al., Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone, 2004. 35(2): p. 562-569.
69. Intini, G., et al., Engineering a bioactive matrix by modifications of calcium sulfate. Tissue engineering, 2002. 8(6): p. 997-1008.
70. Salvadori, B., et al., A novel method to prepare inorganic water-soluble nanocrystals. J Colloid Interface Sci, 2006. 298(1): p. 487-90.
71. Park, Y.B., et al., Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration. Biomedical Materials, 2011. 6(5): p. 055007.
72. Hak, D.J., The use of osteoconductive bone graft substitutes in orthopaedic trauma. Journal of the American Academy of Orthopaedic Surgeons, 2007. 15(9): p. 525-536.
73. Lewis, G., Injectable bone cements for use in vertebroplasty and kyphoplasty: State‐of‐the‐art review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006. 76(2): p. 456-468.
74. Bohner, M., Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater, 2010. 20(1).
75. Burg, K.J., S. Porter, and J.F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials, 2000. 21(23): p. 2347-2359.
76. 陳維塘, 磷酸鈣骨水泥添加半水石膏之複合材料製備分析用於覆髓治療之研究. 臺北科技大學材料科學與工程研究所學位論文, 2010: p. 1-66.
77. Ngamwongsatit, P., et al., WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic< i> Bacillus</i> species using CHO cell line. Journal of Microbiological Methods, 2008. 73(3): p. 211-215.
78. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 1983. 65(1): p. 55-63.
79. Nilsson, M., et al., Factors influencing the compressive strength of an injectable calcium sulfate–hydroxyapatite cement. Journal of Materials Science: Materials in Medicine, 2003. 14(5): p. 399-404.
80. Lewry, A. and J. Williamson, The setting of gypsum plaster. Journal of materials science, 1994. 29(20): p. 5279-5284.
81. Yang, X., et al., Evaluation of a biodegradable graft substitute in rabbit bone defect model. Indian journal of orthopaedics, 2012. 46(3): p. 266.
82. Bell, W.H., Resorption characteristics of bone and bone substitutes. Oral Surgery, Oral Medicine, Oral Pathology, 1964. 17(5): p. 650-657.
83. Burkersroda, F.v., L. Schedl, and A. Gopferich, Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002. 23(21): p. 4221-4231.
84. 周上筆, 複合磷酸鈣與硫酸鈣生醫材料之降解機制. 臺北科技大學材料科學與工程研究所學位論文, 2011: p. 1-89.
85. Hench, L.L., et al., Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971. 5(6): p. 117-141.
86. Kim, H.-M., et al., The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. Journal of the Royal Society Interface, 2004. 1(1): p. 17-22.
87. Koh, E., et al., Mineral trioxide aggregate stimulates a biological response in human osteoblasts. Journal of Biomedical Materials Research, 1997. 37(3): p. 432-439.
88. Thomson, T.S., et al., Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. Journal of Endodontics, 2003. 29(6): p. 407-412.
89. Zhu, Q., et al., Adhesion of human osteoblasts on root-end filling materials. Journal of Endodontics, 2000. 26(7): p. 404-406.
90. d’Aquino, R., et al., Dental pulp stem cells: a promising tool for bone regeneration. Stem cell reviews, 2008. 4(1): p. 21-26.
91. Gronthos, S., et al., Stem cell properties of human dental pulp stem cells. Journal of dental research, 2002. 81(8): p. 531-535.
92. Luisi, S.B., J.J.D. Barbachan, and J.A.B. Chies, Behavior of human dental pulp cells exposed to transforming growth factor-beta1 and acidic fibroblast growth factor in culture. Journal of endodontics, 2007. 33(7): p. 833-835.
93. Schembri, M., G. Peplow, and J. Camilleri, Analyses of heavy metals in mineral trioxide aggregate and Portland cement. Journal of endodontics, 2010. 36(7): p. 1210-1215.
94. Jafarnia, B., et al., Evaluation of cytotoxicity of MTA employing various additives. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2009. 107(5): p. 739-744.
95. Yasuda, Y., et al., The Effect of Mineral Trioxide Aggregate on the Mineralization Ability of Rat Dental Pulp Cells: An< i> In Vitro</i> Study. Journal of endodontics, 2008. 34(9): p. 1057-1060.
96. Kao, C.-T., et al., Properties of an Accelerated Mineral Trioxide Aggregate–like Root-end Filling Material. Journal of endodontics, 2009. 35(2): p. 239-242.
97. Oh, S., et al., Influence of tricalcium aluminate phase on in vitro biocompatibility and bioactivity of calcium aluminate bone cement. Journal of materials research, 2004. 19(04): p. 1062-1067.
98. Gutman, A.B., Serum alkaline phosphatase activity in diseases of the skeletal and hepatobiliary systems: A consideration of the current status. The American journal of medicine, 1959. 27(6): p. 875-901.
99. Steinfort, J., T. van den Bos, and W. Beertsen, Differences between enamel-related and cementum-related dentin in the rat incisor with special emphasis on the phosphoproteins. Journal of Biological Chemistry, 1989. 264(5): p. 2840-2845.
100. Lallier, T.E., et al., A simple cell motility assay demonstrates differential motility of human periodontal ligament fibroblasts, gingival fibroblasts, and pre-osteoblasts. Cell and tissue research, 2007. 328(2): p. 339-354.
101. Farley, J.R. and D.J. Baylink, Skeletal alkaline phosphatase activity as a bone formation index in vitro. Metabolism, 1986. 35(6): p. 563-571.
102. Wei, X., et al., Expression of mineralization markers in dental pulp cells. Journal of endodontics, 2007. 33(6): p. 703-708.
103. Wlodarski, K.H. and A. Reddi, Alkaline phosphatase as a marker of osteoinductive cells. Calcified tissue international, 1986. 39(6): p. 382-385.
104. Puchtler, H., S.N. Meloan, and M.S. TERRY, On the history and mechanism of alizarin and alizarin red S stains for calcium. Journal of Histochemistry & Cytochemistry, 1969. 17(2): p. 110-124.
105. Tsukamoto, Y., et al., Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Archives of oral biology, 1992. 37(12): p. 1045-1055.
106. About, I., et al., Human Dentin Production< i> in Vitro</i>. Experimental cell research, 2000. 258(1): p. 33-41.
107. Iohara, K., et al., Dental Pulp Stem Cell Therapy for Dentin Regeneration with Recombinant Human Bone Morphogenetic Protein (BMP) 2. Japanese Journal of Conservative Dentistry, 2003. 46(5): p. 654-665.
108. Yokose, S., et al., Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcified tissue international, 2000. 66(2): p. 139-144.
109. Gronthos, S., et al., Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 2000. 97(25): p. 13625-13630.
110. Liu, J., et al., In vitro differentiation and mineralization of human dental pulp cells induced by dentin extract. In Vitro Cellular & Developmental Biology-Animal, 2005. 41(7): p. 232-238.
111. Rashid, F., et al., The effect of extracellular calcium ion on gene expression of bone-related proteins in human pulp cells. Journal of endodontics, 2003. 29(2): p. 104-107.
112. Tu, Q., et al., Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. Journal of Clinical Investigation, 2003. 111(7): p. 1029-1037.
113. Sasaki, T. and H. Kawamata-Kido, Providing an environment for reparative dentine induction in amputated rat molar pulp by high molecular-weight hyaluronic acid. Archives of oral biology, 1995. 40(3): p. 209-219.
114. Oguntebi, B.R., et al., Quantitative assessment of dentin bridge formation following pulp-capping in miniature swine. Journal of endodontics, 1995. 21(2): p. 79-82.
115. Javelet, J., M. Torabinejad, and L.K. Bakland, Comparison of two pH levels for the induction of apical barriers in immature teeth of monkeys. Journal of endodontics, 1985. 11(9): p. 375-378.
116. Narita, H., et al., An explanation of the mineralization mechanism in osteoblasts induced by calcium hydroxide. Acta biomaterialia, 2010. 6(2): p. 586-590.
117. Martin, A., et al., Effects of aFGF, bFGF, TGFbeta1 and IGF-I on odontoblast differentiation in vitro. European journal of oral sciences, 1998. 106: p. 117-121.
118. Smith, A.J., et al., Reactionary dentinogenesis. Int J Dev Biol, 1995. 39(1): p. 273-80.
119. Li, Y., et al., Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Archives of Oral Biology, 2011. 56(11): p. 1221-1229.
120. Li, F., et al., Porous chitosan bilayer membrane containing TGF-β1 loaded microspheres for pulp capping and reparative dentin formation in a dog model. Dental Materials, 2014. 30(2): p. 172-181.
121. El‐Backly, R.M., et al., Regeneration of dentine/pulp‐like tissue using a dental pulp stem cell/poly (lactic‐co‐glycolic) acid scaffold construct in New Zealand white rabbits. Australian Endodontic Journal, 2008. 34(2): p. 52-67.
122. Magloire, H., A. Joffre, and F. Bleicher, An in vitro model of human dental pulp repair. J Dent Res, 1996. 75(12): p. 1971-8.
123. Matsushita, K., et al., The role of vascular endothelial growth factor in human dental pulp cells: induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. Journal of dental research, 2000. 79(8): p. 1596-1603.
124. Iohara, K., et al., Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. Journal of dental research, 2004. 83(8): p. 590-595.
125. Tziafas, D., Reparative dentinogenesis: a monograph on the dentinogenic potential of dental pulp. 1997: University Studio Press.
126. Yoshiba, K., et al., Immunolocalization of fibronectin during reparative dentinogenesis in human teeth after pulp capping with calcium hydroxide. Journal of dental research, 1996. 75(8): p. 1590-1597.
127. Unda, F., et al., FGFs-1 and-2, and TGFβ 1 as inductive signals modulating in vitro odontoblast differentiation. Advances in dental research, 2001. 15(1): p. 34-38.
128. Laib, A., et al., 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Medical and Biological Engineering and Computing, 2000. 38(3): p. 326-332.
129. Kapadia, R.D., et al., Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis. Technology and health care, 1998. 6(5): p. 361-372.
130. Fanuscu, M.I. and T.L. Chang, Three‐dimensional morphometric analysis of human cadaver bone: microstructural data from maxilla and mandible. Clinical oral implants research, 2004. 15(2): p. 213-218.
131. Wan, S.-Y., et al., Extraction of the hepatic vasculature in rats using 3-D micro-CT images. Medical Imaging, IEEE Transactions on, 2000. 19(9): p. 964-971.
132. Cowan, C.M., et al., MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue engineering, 2007. 13(3): p. 501-512.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55760-
dc.description.abstract活髓治療的目的在於治療任何可回復性的牙髓傷害,給予具生物活性與保護性之覆髓材料,並保持牙髓活性與誘導牙本質-牙髓修復再生。然而,活髓材料發展至今,在臨床上仍然沒有理想之活髓材料。目前在臨床上較常使用的活髓材料存在著操作性質差、硬化時間過長、機械性質不足或誘導牙髓–牙本質再生能力不足等缺點。為了改良並取代目前活髓材料的不足,本研究以奈米硫酸鈣和氫氧基磷灰石為基質,研發出可攜帶複方生長因子 (TGF-β1/VEGF) 之雙相生醫活髓材料。
本研究主要分成四大部分進行:第一部分為材料製成、物理性質評估與最佳化之研究。利用低溫真空法將二水硫酸鈣製成奈米級硫酸鈣,並利用化學共沉澱法合成氫氧基磷灰石,與醫療級半水硫酸鈣三種材料混合調整出最佳比例後,進行材料物理性質測試,包括以X光繞射分析材料結晶相、掃瞄式電子顯微鏡觀察材料表面結構、硬化時間、材料降解度、抗壓強度測試、以及生長因子釋放曲線分析等。第二部分為分析醫材體外細胞毒性與生物相容性;第三部分主要是分析材料誘導牙髓細胞之礦化能力,以評估其當活髓材料在誘導牙本質-牙髓組織再生中所扮演的角色。第四部分則以大鼠作為模型進行動物實驗、微電腦斷層(Micro-CT)非破壞性檢視,以及組織形態學分析。
結果顯示,雙相複合材料 nCS/HAp/CS 的初始硬化時間為 15 分鐘,符合臨床操作性質。浸泡在磷酸緩衝溶液中的複合材料 1 天的抗壓強度可維持在 7.0 MPa 左右,並在 1 週後有下降的趨勢。生長因子 (TGF-β1/VEGF) 在 14 天內可測得 60∼70 %的釋放量。生物相容性測試結果顯示雙相複合材料並不會對人類牙髓細胞的增生或存活造成影響。在雙相材料中加入 6 ng/mL TGF-β1 和 0.5 ng/mL VEGF 亦可促進鹼性磷酸酶和細胞基質礦化小體的表現。而動物實驗方面,以攜帶 TGF- β1 和 VEGF 的雙相生醫材料活髓治療 4 週後之大鼠臼齒,藉由 Micro-CT 和組織切片觀察到明顯的修復性牙本質橋形成。
綜合以上結論,顯示以本實驗所研發之奈米硫酸鈣與氫氧基磷灰石雙相生醫材料攜帶 TGF- β1 和 VEGF,在操作性質、生物相容性、促進細胞礦化能力,以及誘導牙本質-牙髓修復再生之能力均不亞於市售產品之表現,故在臨床應用上對於活髓治療之發展應具有相當的潛力。
zh_TW
dc.description.abstractTo treat the reversible pulpal injury, vital pulp therapy aims to preserve pulp vitality as well as to induce dentin-pulp repair/regeneration by direct applying a bioactive material. However, after years of research and development of the capping agents, there is still a shortage of the ideal capping material for vital pulp therapy. Current pulp capping materials present several limitations, such as poor handling properties, prolonged setting time, insufficient mechanical properties, or difficulty to induce dentin-pulp complex regeneration, which in turn influences the prognosis of vital pulp therapy. Hence, the innovation of vital pulp therapy is important to overcome the limitations of current materials. The purpose of this study is to develop a biphasic biomaterial with inorganic materials, nano-calcium sulfate (nCS) and hydroxyapatite (HAp) as a bioactive pulp capping agent which is able to carry dual growth factors (TGF-β1/VEGF) for the induction of dentin-pulp complex regeneration.
This study carried out in four parts-Part I: By using cryo–vacuum method, calcium sulfate dihydrate (CSD) was modified to nano-calcium sulfate hemihydrate. Hydroxyapatite was synthesized via chemical co-precipitation. We characterized crystalline phase via X-ray diffraction, and observed the microstructure by scanning electron microscope. The physical properties such as the setting time, compressive strength, in vitro degradation rate and the releasing profile of growth factors were determined while the ratio of nCS/HAp/CS was optimized. Part II: The cell-material interaction study, WST-1 and LDH assay was performed to evaluate the biocompatibility and cell cytotoxicity of nCS/HAp/CS/TGF-β1/VEGF cement. Part III: Evaluation of the cell mineralization ability of human dental pulp cell in response to the biomaterials so as to assess their roles in the pulp capping material in term of the induction of dentin-pulp complex regeneration. Part IV: An animal model of rat was established. In vivo evaluation was performed by non-destructive micro-CT determination and histological analysis.
The results revealed that the initial setting time of the nCS/HAp/CS biphasic cement was 15 minutes, which exhibits substantial improvement compared with the commercial product. The compressive strength of the biphasic cement after immersion in phosphate buffered saline solution in 1 day was 7.0 MPa, and decreased after 1 week. Sustained release of TGF-β1/VEGF was achieved up to 60~70% through the biomaterial within 2 weeks. The excellent biocompatibility of the biphasic cement was also confirmed by WST-1 and LDH test, which indicates no significant difference between control group (DMEM) and experimental group (nCS/HAp/CS/TGF-β1/VEGF). Pulp cells treated with nCS/HAp/CS carrying 6 ng/mL TGF-β1 and 0.5 ng/mL VEGF showed increased level of ALP activity and formation of calcified nodules in vitro. In the animal study, the non-destructive determination with micro-CT evaluation showed hard tissue formation during 4-week measurements. Histological analysis demonstrated a prominent formation of reparative dentin bridge with nCS/HAp/CS/TGF-β1/VEGF cement after 4 weeks.
Based on the present findings, in view of the advantages of the nCS/HAp/CS/TGF-β1/VEGF cement as the bioactive dressing material for vital pulp therapy, such novel compound is as competitive as the commercial products in minimally invasive treatment of dental pulp therapy and has promising prospects. We concluded that the developed nCS/HAp/CS cement could act as a potent carrier for sustained release of growth factors, and the nCS/HAp/CS/TGF-β1/VEGF cement is of great potential to promote dentin-pulp complex regeneration.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:08:07Z (GMT). No. of bitstreams: 1
ntu-103-R00422016-1.pdf: 4736035 bytes, checksum: 965d7fbb66b7b79bc3ea6742d7fa69db (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents謝誌……………………………………………………………………………………I
中文摘要…………………………………………………………………………….. II
Abstract……………………………………………………………………………...... IV
目錄…………………………………………………………………………………VII
表目錄……………………………………………………………………………….XI
圖目錄………………………………………………………………………………XII
第一章 緒論.………………………………………………………………………….1
1.1 保存牙髓活性之重要性 ……………………………………………………1
1.1.1 牙髓之發育與構造………………………………………………….…...….1
1.1.2 保留牙髓於臨床治療的意義……………………………………….……..2
1.2 活髓治療 (Vital Pulp Therapy)………………………………………............3
1.3 現今活髓治療材料……………………………………………………………4
1.3.1 理想活髓材料之需求……………………………………………………..4
1.3.2 現今活髓材料之缺點與限制……………………………………………..5
1.3.2.1 氫氧化鈣……………………………………………………………..5
1.3.2.2 三氧礦化物…………………………………………………………..6
1.4 生長因子於活髓治療之應用潛力…………………………………………...7
1.4.1 TGF-β1 (Transforming Growth Factor-β1)………………………………..7
1.4.2 VEGF (Vascular Endothelial Growth Factor)……………………………..8
1.5 載體(Carrier)…………………………………………………………………9
1.6 雙相複合生醫陶瓷材料作為載體之選擇 …………………………………..11
1.6.1 雙相複合生醫陶瓷材料……………………………….............................11
1.6.2 氫氧基磷灰石(Hydroxyapatite)…………………………….....................12
1.6.3 半水硫酸鈣(Calcium sulfate hemihydrate; CaSO4 • ½H2O)…................12
1.6.4 奈米級硫酸鈣 (Nano-calcium Sulfate)................................................... 14
1.7 雙相複合生醫材料攜帶生長因子於活髓治療之優勢..................................14
第二章 實驗動機與目的..............................................................................16
第三章 材料與方法..........................................................................................17
3.1實驗材料之製備...................................................................................17
3.1.1 奈米硫酸鈣之合成(Nano-Calcium Sulfate, nCS)................................17
3.1.2 氫氧基磷灰石顆粒之製備(Hydroxyapatite, HAp)...................................18
3.1.3 雙相生醫材料(nCS/HAp/CS)比例之最佳化.............................................19
3.2 材料性質分析..........................................................................................19
3.2.1 X光繞射分析 (X-ray diffraction, XRD).....................................................19
3.2.2 掃瞄式電子顯微鏡 (SEM) 觀察材料之顯微結構...................................19
3.2.3 硬化時間(Setting Time)..................................................................20
3.2.4 抗壓強度測試(Compressive Strength) .............................................20
3.2.5 材料降解率之測定( In Vitro Degradation Rate) ..............................21
3.2.6 生長因子之釋放測試(Releasing Profiles of Growth Factors)....................22
3.2.7 酸鹼值之評估(pH variation) .........................................................22
3.2.8 鈣離子釋放評估(Calcium Ions Releasing Profile).....................................23
3.3 體外細胞活性及生物相容性測試............................................................23
3.3.1 材料萃取液之製備..............................................................................23
3.3.2 人類牙髓細胞之初級培養..................................................................23
3.3.3 材料-細胞貼附行為之研究................................................................24
3.3.3.1 測試樣本之製備 ................................................................................24
3.3.3.2 細胞-材料共同培養 ........................................................................24
3.3.4 WST-1 細胞存活率測試(Cell Viability Assay) .................................25
3.3.5 LDH細胞毒性測試(Lactate Dehydrogenase Cytotoxicity Assay)............. 26
3.4 體外細胞礦化行為分析.........................................................................27
3.4.1 鹼性磷酸酶定性染色分析(ALP Staining Assay).......................................27
3.4.2 鹼性磷酸酶定量分析(ALP Activity Quantitative Assay)..........................29
3.4.2.1鹼性磷酸酶(ALP)活性定量 ...............................................................29
3.4.2.2 Total protein 定量 .......................................................................30
3.4.3 細胞基質礦化小體染色(Alizarin Red Staining, ARS)..............................30
3.5 動物實驗................................................................................................31
3.5.1 測試材料分組......................................................................................31
3.5.2 活髓治療之動物實驗模型................................................................32
3.5.3 微電腦斷層掃瞄(Micro-Computed Tomography, μ-CT)...................33
3.5.4 組織切片製備與分析......................................................................33
第四章 實驗結果 .....................................................................................35
4.1 材料性質分析......................................................................................35
4.1.1雙相生醫材料之 X 光繞射分析................................................................35
4.1.2 雙相生醫材料之顯微結構................................................................35
4.1.3 硬化時間測試.................................................................................36
4.1.4 抗壓強度測試
...................................................................................36
4.1.5 材料降解率之測定...........................................................................36
4.1.6 生長因子之釋放測試....................................................................37
4.1.7 酸鹼值之評估..................................................................................37
4.1.8 鈣離子釋放評估..............................................................................38
4.2 體外細胞活性及生物相容性測試..................................................................38
4.2.1 材料-細胞貼附行為之研究.......................................................................38
4.2.2 WST-1 細胞存活率測試....................................................................38
4.2.3 LDH 細胞毒性測試.............................................................................39
4.3 體外細胞礦化行為分析......................................................................39
4.3.1 鹼性磷酸酶定性染色分析..............................................................39
4.3.2 鹼性磷酸酶定量分析 ..................................................................40
4.3.3 細胞基質礦化小體染色分析.....................................................................40
4.4 動物實驗............................................................................................41
4.4.1 μ-CT 影像分析................................................................................41
4.4.2 組織切片觀察...................................................................................41
第五章 討論 ............................................................................................43
第六章 結論 .........................................................................................53
第七章 未來研究方向 ...................................................................................54
參考資料............................................................................................55


表目錄
表 4-1 材料之硬化時間測試結果............................................................70














圖目錄
圖 3-1 奈米級硫酸鈣之製備流程圖........................................................... 17
圖 3-2 氫氧基磷灰石之製備流程圖...........................................................18
圖 3-3 WST-1 檢測原理圖........................................................................ 25
圖 3-4 LDH 檢測原理圖...............................................................................26
圖 3-5 動物實驗說明............................................................................... 32
圖 4-1 奈米級硫酸鈣之X光繞射圖譜與JCPDS之半水硫酸鈣標準資料檔.....71
圖 4-2 氫氧基磷灰石之X光繞射圖譜與JCPDS之氫氧基磷灰石標準資料檔..71
圖 4-3 掃瞄式電子顯微鏡觀察奈米硫酸鈣(nCS)之顯微結構.............................72
圖 4-4 掃瞄式電子顯微鏡觀察氫氧基磷灰石(HAp)顆粒顯微結構........................73
圖 4-5 掃瞄式電子顯微鏡觀察nCS/HAp/CS試片之表面顯微結構..................74
圖 4-6 掃瞄式電子顯微鏡觀察nCS/HAp/CS試片之斷面顯微結構..................75
圖 4-7 不同時間點nCS/HAp/CS之抗壓強度及材料降解度測試結果..............76
圖 4-8 TGF-β1和VEGF於材料nCS/HAp/CS之累積釋放曲線.......................76
圖 4-9 材料浸泡於PBS中不同時間點之 pH 值變化..........................................77
圖 4-10 材料浸泡於PBS中之鈣離子累積釋放量..................................................77
圖 4-11 掃瞄式電子顯微鏡觀察細胞貼附於材料nCS/HAp/CS 表面之情形.....78
圖 4-12 掃瞄式電子顯微鏡觀察細胞貼附於材料nCS/HAp/CS/TGF-β1/VEGF表 面之情形...............................................................................79
圖 4-13 牙髓細胞於 1 天之 WST-1 測試結果.............................................80
圖 4-14 牙髓細胞於 3 天之 WST-1 測試結果.............................................80
圖 4-15 牙髓細胞於 1 天之 LDH 測試結果........................................................81
圖 4-16 牙髓細胞於 3 天之 LDH 測試結果........................................................81
圖 4-17 牙髓細胞培養 10 天後,鹼性磷酸酶定性染色結果................................82
圖 4-18 牙髓細胞於 5 天之 ALP 定量測試結果.................................................83
圖 4-19 牙髓細胞於 10 天之ALP 定量測試結果...............................................83
圖 4-20 牙髓細胞培養 18 天後,Alizarin red染色結果............................84
圖 4-21 經 CTVoxR處理μ-CT的影像分析結果...........................................85
圖 4-22 nCS/HAp/CS/TGF-β1/VEGF組於1週組織切片結果.............................86
圖 4-23 nCS/HAp/CS組於1週組織切片結果............................................87
圖 4-24 nCS/HAp/CS/TGF-β1/VEGF 組於2週組織切片結果............................88
圖 4-25 nCS/HAp/CS/TGF-β1/VEGF 組於2週組織切片結果............................89
圖 4-26 nCS/HAp/CS 組於2週及4週組織切片結果..........................................90
圖 4-27 nCS/HAp/CS/TGF-β1/VEGF組於4週組織切片結果.............................91
附圖 1 X光繞射分析儀.........................................................................92
附圖 2 臨界點乾燥機..................................................................................92
附圖 3 金屬離子覆膜機..........................................................................93
附圖 4 掃瞄式電子顯微鏡-Hitachi Scanning Electron Microscope S-2400...... 93
附圖 5 掃瞄式電子顯微鏡-Nova NanoSEM™ 30 Series, FEI, HK ...................94
附圖 6 Gilmore needle......................................................................... 94
附圖 7 萬用拉力測試機..............................................................................95
附圖 8 Multi-function water quality meter..................................................95
附圖 9 μ-CT Skyscan 1176.........................................................................96
附圖 10 光學顯微鏡-Zeiss Axiovert 200M..............................................96
dc.language.isozh-TW
dc.title研發奈米硫酸鈣/氫氧基磷灰石雙相生醫材料攜帶TGF-β1/VEGF於活髓治療之應用-材料性質、生物相容性及動物實驗zh_TW
dc.titleDevelopment of Biphasic Nano-Calcium Sulfate/Hydroxyapatite Biomaterial as TGF-β1/VEGF Carrier for Vital Pulp Therapy-Material Property, Biocompatibility and Animal Studyen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高嘉澤,陳敏慧,陳賢燁
dc.subject.keyword活髓治療,牙本質-牙髓再生,奈米硫酸鈣,氫氧基磷灰石,生長因子,zh_TW
dc.subject.keywordvital pulp therapy,dentin-pulp complex regeneration,nano-calcium sulfate,hydroxyapatite,TGF-β1,VEGF,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved