請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55751
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳肇欣(Chao-Hsin Wu) | |
dc.contributor.author | Shih-Kun Lin | en |
dc.contributor.author | 林詩堃 | zh_TW |
dc.date.accessioned | 2021-06-16T05:08:01Z | - |
dc.date.available | 2025-07-03 | |
dc.date.copyright | 2020-08-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-29 | |
dc.identifier.citation | [1] https://5g.co.uk/news/video-streaming-and-faster-5g-speeds-data-usage-surge/4274/ [2] https://connectlp.keysight.com/400GPosterOndemandVideov3?elq_cid=1337775 cmpid= elqCampaignId=10814 elqTrackId=9EE8A5CE6F04EF54212C791BE3C6E786 elq=9a88e658a2af4bc9910d36f66205773a elqaid=19511 elqat=1 elqCampaignId=10814 (Keysight演講影片) [3] https://www.servethehome.com/intel-silicon-photonics-update-at-interconnect-day-2019/ [4] https://www.youtube.com/watch?v=gsTl2qkWnp0 [5] 科技部專題研究計畫申請書-計畫名稱「邁向新世代1.6兆位元矽光子平台光收發模組之研究」 [6] Welch, David F. 'A brief history of high-power semiconductor lasers.' IEEE Journal of selected topics in quantum electronics 6.6 (2000): 1470-1477.C. D. Jones, A. B. Smith, and E.F. Roberts, Book Title, Publisher, Location, Date. [7] Kogelnik, H., and C. V. Shank. 'Coupled‐wave theory of distributed feedback lasers.' Journal of applied physics 43.5 (1972): 2327-2335. [8] Ghafouri-Shiraz, H., and C. Y. J. Chu. 'Distributed feedback lasers: an overview.' Fiber Integrated Optics 10.1 (1991): 23-47. [9] Wang, Shyh. 'Principles of distributed feedback and distributed Bragg-reflector lasers.' IEEE Journal of Quantum Electronics 10.4 (1974): 413-427. [10] Kazarinov, R. F., and R. A. Suris. 'Injection heterojunction laser with a diffraction grating on its contact surface.' SOVIET PHYSICS SEMICONDUCTORS-USSR 6.7 (1973): 1184-1189. [11] A. Yariv, Quantum Electronics, 3rd ed. (New York: Wiley, 1989). [12] Streifer, William, D. Scifres, and R. Burnham. 'Coupling coefficients for distributed feedback single-and double-heterostructure diode lasers.' IEEE Journal of quantum electronics 11.11 (1975): 867-873. [13] Kojima, Keisuke, Kazuo Kyuma, and Takashi Nakayama. 'Analysis of the spectral linewidth of distributed feedback laser diodes.' Journal of lightwave technology 3.5 (1985): 1048-1055. [14] Streifer, William, R. Burnham, and D. Scifres. 'Effect of external reflectors on longitudinal modes of distributed feedback lasers.' IEEE Journal of Quantum Electronics 11.4 (1975): 154-161. [15] Utaka, K., et al. 'Analysis of quarter-wave-shifted DFB laser.' Electronics Letters 20.8 (1984): 326-327. [16] Utaka, K., et al. 'Analysis of quarter-wave-shifted DFB laser.' Electronics Letters 20.8 (1984): 326-327. [17] Zah, Chung-En, et al. 'High-performance uncooled 1.3-/spl mu/m Al/sub x/Ga/sub y/In/sub 1-xy/As/InP strained-layer quantum-well lasers for subscriber loop applications.' IEEE Journal of Quantum Electronics 30.2 (1994): 511-523. [18] Piprek, Joachim, J. Kenton White, and Anthony J. SpringThorpe. 'What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?.' IEEE journal of quantum electronics 38.9 (2002): 1253-1259. [19] Takemasa, Keizo, et al. '1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer.' IEEE Photonics Technology Letters 10.4 (1998): 495-497. [20] Photonic Integrated Circuit Simulator in 3D (PICS3D) manual, 2018 [21] Haus, Hermann A. Waves and fields in optoelectronics. Prentice-Hall,, 1984. [22] Prosyk, Kelvin, John G. Simmons, and J. D. Evans. 'Well number, length, and temperature dependence of efficiency and loss in InGaAsP-InP compressively strained MQW ridge waveguide lasers at 1.3/spl mu/m.' IEEE journal of quantum electronics 33.8 (1997): 1360-1368. [23] Lin, Jie, et al. 'Smooth and vertical-sidewall InP etching using Cl 2/N 2 inductively coupled plasma.' Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 22.2 (2004): 510-512. [24] Clawson, A. R. 'Guide to references on III–V semiconductor chemical etching.' Materials Science and Engineering: R: Reports 31.1-6 (2001): 1-438. [25] Ivey, D. G., et al. 'Micro structural study of Ti/Pt/Au contacts to p-InGaAs.' Materials Science and Engineering: B 49.1 (1997): 66-73. [26] Kuphal, E. 'Low resistance ohmic contacts to n-and p-InP.' Solid-State Electronics 24.1 (1981): 69-78. [27] Klehr, Andreas, et al. 'High-power monolithic two-mode DFB laser diodes for the generation of THz radiation.' IEEE Journal of Selected Topics in Quantum Electronics 14.2 (2008): 289-294. [28] Belenky, Gregory, et al. 'Direct measurement of lateral carrier leakage in 1.3-/spl mu/m InGaAsP multiple-quantum-well capped mesa buried heterostructure lasers.' IEEE journal of quantum electronics 38.9 (2002): 1276-1281. [29] Soda, Haruhisa, and Hajime Imai. 'Analysis of the spectrum behavior below the threshold in DFB lasers.' IEEE journal of quantum electronics 22.5 (1986): 637-641. [30] Kihara, K., et al. 'Evaluation of the coupling coefficient of a distributed feedback laser with residual facet reflectivity.' Journal of applied physics 62.4 (1987): 1526-1527. [31] Hirayama, Y., et al. 'Determination of coupling coefficient of DFB lasers by a newly proposed method.' Electronics Letters 23.3 (1987): 101-103. [32] Morrison, Gordon B., Daniel T. Cassidy, and Douglas M. Bruce. 'Facet phases and sub-threshold spectra of DFB lasers: spectral extraction, features, explanations and verification.' IEEE journal of quantum electronics 37.6 (2001): 762-769. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55751 | - |
dc.description.abstract | 本論文以1310奈米高功率DFB雷射之設計與製作為主題,分為五個章節,論文內容包含高功率DFB雷射的設計流程、參數優化的方法、元件的模擬、元件的製程、以及直流特性的分析。
第一章為緒論,此章節將介紹應用於次世代1.6 Tb/s高超速矽光子收發模組的雷射光源的需求。第二章將介紹DFB雷射的基本理論,讓讀者對Fabry-Perot雷射及DFB雷射有個基本的了解。第三章為元件的模擬與設計,此章節將說明元件設計的邏輯,並探討各個參數優化的方法,詳述我們如何一步步設計出我們的元件,並展示最終設計出來的磊晶結構表。第四章為元件製作與量測結果,此章節將詳細說明元件的製作流程,並將量測得到的結果與第三章的模擬結果做比較。第五章為結論,將對以上四個章節做出總結。 本篇論文探討了DFB雷射設計的方法和邏輯,並用PICS3D模擬軟體建立了DFB雷射的理論模型,能準確地預測DFB雷射的輸出特性及頻譜,同時也能透過這個模型分析出切割造成的端面相位。我們總共製作了12種不同光柵週期與不同脊形波導寬度的元件。量測結果顯示,光柵週期202 nm及203 nm的元件為單模,對應的波長分別為1306 nm及1311 nm。我們所量測到的最大光強度在脈衝操作下可達100 mW,元件的SMSR可達45 dB,雷射的水平發散角約為17.8°,垂直發散角約為31.3°。 | zh_TW |
dc.description.abstract | This thesis focuses on the design and fabrication of the high-power 1310 nm DFB lasers. The thesis is divided into five chapters covering the laser design flow, optimization methods, device simulation, device fabrication and analysis of DC characteristics.
Chapter 1 will introduce the requirements of light sources for next generation 1.6 Tb/s ultra-high-speed silicon photonic transceiver modules. Chapter 2 will introduce the basic theory of DFB lasers, so that readers have a basic understanding of Fabry-Perot lasers and DFB lasers. Chapter 3 covers device design and simulation. We will show how we designed our laser step-by-step and demonstrate the final layer structure. Chapter 4 will explain in detail the fabrication process and compare the measured results to the simulated data in Chapter 3. Chapter 5 is the conclusion of the above four chapters. The methods of designing and optimizing DFB laser are discussed in this thesis. We performed the simulation using PICS3D commercial laser simulation software. Our model can precisely simulate the LIV characteristics and the spectrum of the DFB laser and can also estimate the facet phase. We have fabricated and measured DFB lasers of 12 different specifications. Results show that devices with grating periods of 202 nm and 203 nm show single mode output, and the corresponding wavelengths are 1306 nm and 1311 nm, respectively. The maximum output power of 100 mW under pulsed operation and the SMSR of 45 dB have been demonstrated. The horizontal and vertical divergence angles are 17.8° and 31.3°, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:01Z (GMT). No. of bitstreams: 1 U0001-2907202004275500.pdf: 18613077 bytes, checksum: 2b5c1b9c98e57b9818e176a6dff82d56 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 緒論 1 Chapter 2 DFB雷射之理論機制 6 2.1 半導體雷射的基礎知識 6 2.1.1 半導體雷射介紹 6 2.1.2 Fabry-Perot雷射 7 2.1.3 Fabry-Perot雷射的模態 9 2.2 耦合波理論與DFB雷射 12 2.2.1 耦合波理論 13 2.2.2 禁止帶 15 2.2.3 DFB雷射的模態 16 2.2.4 縱向模態的分布 17 2.3 Phase-shifted DFB雷射 19 Chapter 3 元件的模擬與設計 21 3.1 元件的設計考量 21 3.1.1 主動層的設計 23 3.1.2 光學侷限因子的控制 26 3.1.3 電子停止層 28 3.1.4 光柵的設計 30 3.1.5 磊晶結構 34 3.2 元件設計與模擬結果 36 3.3 光罩與製程的設計 42 Chapter 4 元件的製作與量測結果 44 4.1 元件製程 44 4.2 直流特性分析 50 4.2.1 量測架設 50 4.2.2 L-I-V特性 54 4.2.3 頻譜 60 4.2.4 遠場發散角 66 4.3 量測結果與討論 68 4.3.1 光柵週期的影響 68 4.3.2 脊形波導寬度的影響 69 4.3.3 量測結果與模擬結果的比較 71 4.3.4 端面相位效應的探討 76 Chapter 5 結論 80 REFERENCE 81 附錄 85 | |
dc.language.iso | zh-TW | |
dc.title | 1310奈米高功率分布回饋雷射之設計與製作 | zh_TW |
dc.title | Design and Fabrication of High Power 1310 nm Distributed Feedback Laser | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧廷昌(Tien-Chang Lu),張書維(Shu-Wei Chang),吳育任(Yuh-Renn Wu) | |
dc.subject.keyword | 矽光子,DFB雷射,高功率DFB雷射,單模,雷射設計, | zh_TW |
dc.subject.keyword | Silicon photonics,DFB laser,High-power DFB laser,Single mode,Laser design, | en |
dc.relation.page | 88 | |
dc.identifier.doi | 10.6342/NTU202002015 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-30 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2907202004275500.pdf 目前未授權公開取用 | 18.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。