Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorYen-Chun Linen
dc.contributor.author林彥均zh_TW
dc.date.accessioned2021-06-16T04:19:21Z-
dc.date.available2017-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citation[1] I. Ferain, C. A. Colinge, and J.-P. Colinge, Multigate transistors as the future of classical metal oxide semiconductor field-effect transistors,' Nature, vol. 479, no. 7373, pp. 310~316, 2011.
[2] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,' Electron Devices, IEEE Transactions on, vol. 47, no. 12, pp. 2320~2325,2000.
[3] K. Stokbro, First-principles modeling of molecular single electron transistors,' The Journal of Physical Chemistry C,vol. 114, no. 48, pp. 20461~20465, 2010.
[4] J. DiLorenzo, R. Dingle, M. Feuer, A. Gossard, R. Hendel, J. C. M. Hwang, A. Kastalsky, V. Keramidas, R. Kiehl, and P. O'Connor, Material and device considerations for selectively doped heterojunction transistors,' in 1982 International electron device meeting, vol. 28, pp. 578~581, 1982.
[5] M. Lee, S. Chang, T.-H. Wu, and W.-N. Tseng, Driving current enhancement of strained Ge (110) p-type tunnel FETs and anisotropic effect,' Electron Device Letters, IEEE, vol. 32, no. 10, pp. 1355~1357, 2011.
[6] G. Moore, Cramming more components onto integrated cir-
cuits,' Proceedings of the IEEE, vol. 86, no. 1, pp. 82~85, 1998.
[7] D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, and H.S. P. Wong, Device scaling limits of Si MOSFETs and their
application dependencies,' Proceedings of the IEEE, vol. 89, no. 3,pp. 259~288, 2001.
[8] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Leak-
age current mechanisms and leakage reduction techniques in deepsubmicrometer CMOS circuits,' Proceedings of the IEEE, vol. 91, no. 2, pp. 305~327, 2003.
[9] I. Ahmad, V. Kasisomayajula, M. Holtz, J. Berg, S. Kurtz, C. Tigges, A. Allerman, and A. Baca, Self-heating study of an AlGaN/GaN-based heterostructure eld-effect transistor using ultraviolet micro-raman scattering,' Applied Physics Letters, vol. 86, no. 17, p. 173503, 2005.
[10] W. Y. Choi, B.-G. Park, J.-D. Lee, and T.-J. K. Liu, Tunneling eld-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec,' Electron Device Letters, IEEE, vol. 28, no. 8, pp. 743~745, 2007.
[11] J. A. del Alamo, Nanometre-scale electronics with III-V compound semiconductors,' Nature, vol. 479, no. 7373, pp. 317~323, 2011.
[12] W. G. Pfann and J. H. Scaff, The p-germanium transistor,' Proceedings of the IRE, vol. 38, no. 10, pp. 1151~1154, 1950.
[13] J.-S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy, and D. K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates,' Electron Device Letters, IEEE, vol. 30, no. 6, pp. 650~652, 2009.
[14] B. Radisavljevic, D. Krasnozhon, M. Whitwick, and A. Kis, MoS2-based devices and circuits,' in Device Research Conference (DRC), 2012 70th Annual, pp. 179~180, 2012.
[15] M. P. Anantram, M. LUNDSTROM, and D. Nikonov, Modeling
of nanoscale devices,' Proceedings of the IEEE, vol. 96, no. 9, p. 1511V1550, 2008.
[16] J. Singh, Electronic and Optielectronic Properties of Semiconductor Structure. Cambridge, 2007.
[17] H. Watanabe, K. Kawabata, and T. Ichikawa, A tight binding method study of optimized SiSO2 system,' Electron Devices, IEEE Transactions on, vol. 57, no. 11, pp. 3084~3091, 2010.
[18] M. Szczap, N. Cavassilas, and F. Michelini, Thirty-band kp model for Si-based optoelectronics,' in Computational Electronics (IWCE), 2010 14th International Workshop on, pp. 1~4, 2010.
[19] I. P. Batra, First principles tight binding method for investigating electronic properties of surfaces, interfaces, and bulk solids,' Journal of Vacuum Science and Technology, vol. 16, no. 5, pp. 1359~1363, 1979.
[20] D. Z. Y. Ting, E. T. Yu, and T. C. McGill, Multiband treatment of quantum transport in interband tunnel devices,' Phys. Rev. B, vol. 45, pp. 3583~3592, 1992.
[21] D.-Y. Ting, Multiband and multidimensional quantum transport,' Microelectronics Journal, vol. 30, no. 10, pp. 985~1000, 1999.
[22] W. Chen, L. Register, and S. K. Banerjee, Scattering in a nanoscale MOSFET: a quantum transport analysis,' in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, vol. 1, pp. 32~35 vol.2, 2003.
[23] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structure. Cambridge University Press, 2003.
[24] P. Mazumder, S. Kulkarni, M. Bhattacharya, J. P. Sun, and G. Haddad, Digital circuit applications of resonant tunneling devices,' Proceedings of the IEEE, vol. 86, no. 4, pp. 664~686, 1998.
[25] Z. Shao, W. Porod, and C. Lent, Transmission zero engineering in lateral double barrier resonant tunneling devices,' Applied Physics Letters, vol. 68, no. 15, pp. 2120~2122, 1996.
[26] G. Keller, A. Tchegho, B. Munstermann, W. Prost, and
F. Tegude, Sensitive high frequency envelope detectors based on triple barrier resonant tunneling diodes,' in Indium Phosphide and Related Materials (IPRM), 2012 International Conference on, pp. 36~39, 2012.
[27] H. Tsai, Y. Su, H.-H. Lin, R.-L.Wang, and T. L. Lee, P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature,' Electron Device Letters, IEEE, vol. 15, no. 9, pp. 357~359, 1994.
[28] S.-D. Grigorescu, C. Iliescu, and B. Pantelimon, A sensor self-heating method for lead's resistance compensation in two wires RTD's measurements,' in Precision Electromagnetic Measurements, 1994. Digest., 1994 Conference on, pp. 174~175, 1994.
[29] D. Zhou, Q. Weng, W. Wang, N. Li, B. Zhang, X. Chen, W. Lu, W. Wang, and H. Chen, The photocurrent of resonant tunneling diode controlled by the charging effects of quantum dots,' in Numerical Simulation of Optoelectronic Devices (NUSOD), 2012 12th International Conference on, pp. 49~50, 2012.
[30] C. Turchetti and G. Masetti, Analysis of the depletion-mode MOSFET including diffusion and drift currents,' Electron Devices, IEEE Transactions on, vol. 32, no. 4, pp. 773~782, 1985.
[31] N. Mojumder and K. Roy, Band-to-band tunneling ballistic nanowire FET: Circuit-compatible device modeling and design of ultra-low-power digital circuits and memories,' Electron Devices, IEEE Transactions on, vol. 56, no. 10, pp. 2193~2201, 2009.
[32] T.-J. Chen and C.-L. Kuo, First principles study of the structural, electronic, and dielectric properties of amorphous HfO2,' Journal of Applied Physics, vol. 110, no. 6, p. 064105, 2011.
[33] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost, M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han, D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly, P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon, H. Liu, R. McFadden, B. Mcintyre, J. Neirynck, C. Parker, L. Pipes, I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sandford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C.Weber, P. Yashar, K. Zawadzki, and K. Mistry, A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM
capacitors,' in VLSI Technology (VLSIT), 2012 Symposium on,
pp. 131~132, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55718-
dc.description.abstract本篇主要在探討量子傳輸效應,藉由反覆疊代帕森和薛丁格方程
式求得穩態解。隨著半導體科技演進至奈米等級,求解帕森和飄移
擴散方程式的古典粒子傳輸模型變得不再精準,因為忽略了量子波
的概念。在程式開發中,利用有限差分法建立矩陣來發展計算簡化
的薛丁格方程式,並考慮載子散射機制所造成的影響。其中,非平
衡態格林函數和邊界條件的設定都被引用至薛丁格方程式。這個研
究的的主要特點是成功地引入載子散射機制到薛丁格方程,造成能
量在不同的能階釋放能量到更低能階的效果,並反覆疊代達穩態。
最後是波森和薛丁格方程式兩者反覆疊代計算求得載子濃度、電流
密度與元件位能。本文模擬分析許多元件結構像是穿隧結構、穿隧
共振元件、穿隧場效電晶體元件以及n-i-n結構。
zh_TW
dc.description.abstractThis thesis studies the quantum transport effect by solving the Poisson and Schr odinger equation self-consistently. As we know, as the semiconductor scaling technology enters the nanoscale world, the classical carrier transport model by solving Poisson and drift-diffusion equation model becomes less valid, due to the ignorance of quantum wave pictures. To develop the program for modeling the nanostructure, the finite difference method with the simpli ed Schr odinger equation and considering the scattering effect is used for developing the program. Next, the nonequilibrium green function method is used for boundary condition and they are applied to solve the Schr odinger equation. The key feature of this study is successfully adding the scattering mechanism into the Schr odinger solver for energy relaxation in different energies and solve self-consistently. The last step is the Poisson equation and the Schr odinger Hamiltonian are self-consistently iterated to get the carrier density, current density, and potential of the
device. Several device structures are examined, including the tunneling structures, resonant tunneling devices, tunneling eld effect transistors, and n-i-n structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:19:21Z (GMT). No. of bitstreams: 1
ntu-103-R01941001-1.pdf: 2888430 bytes, checksum: b400aadbd19d7cbe4bd954134d56d9c9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審查表. . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transport Models . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The evolution of the scale of electronic devices . 3
1.2.2 Classical transport model . . . . . . . . . . . . 5
1.2.3 Sub-micrometer scale device modeling . . . . . 5
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . 8
2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Poisson Equation . . . . . . . . . . . . . . . . . . . . . 9
2.3 Finite Difference Method . . . . . . . . . . . . . . . . . 13
2.4 Schr odinger Equation . . . . . . . . . . . . . . . . . . . 16
2.5 Conned States . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Open boundary value problem for continous wave . . . 18
2.7 Physic and Derivation of Carrier Transport . . . . . . . 22
2.7.1 The introduction of the Schr odinger equation by
including the scattering mechanism . . . . . . . 24
2.7.2 The Derivation of the Divergence J . . . . . . . 25
2.7.3 The Derivation of the Scattering Rate . . . . . 26
2.7.4 The Scattering Rate and the Divergence J . . . 32
2.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . 34
3 Device Simulation . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Flat Band . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Tunneling Device . . . . . . . . . . . . . . . . . . . . . 38
3.3 Resonant Tunneling Device - RTD . . . . . . . . . . . . 41
3.4 Tunneling Field Effect Transistors - TFET . . . . . . . 48
3.5 n-i-n Structure - Scattering Mechanism . . . . . . . . . 59
3.5.1 Schr odinger and Phonon Scattering Iteration . . 60
3.5.2 Total Carrier Density and Poisson Solver Iteration 68
3.5.3 Iteration of whole Quantum Transport Program 72
3.5.4 Different bias of n-i-n structures . . . . . . . . . 75
4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 82
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 84
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
dc.language.isoen
dc.subject電晶體元件zh_TW
dc.subject數值模擬及應用zh_TW
dc.subject量子輸運zh_TW
dc.subjectModeling and Applicationen
dc.subjectQuantum Transporten
dc.subjectTransistorsen
dc.title發展電晶體元件量子輸運非平衡態數值模擬及應用zh_TW
dc.titleThe Development and Application of Non-Equilibrium Quantum Transport Modeling for Transistorsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志毅(Chi-Hi Wu),彭隆瀚(Lung-Han Peng),黃建璋(Chien-Chang Huang),賴韋志(Wei-Chih Lai)
dc.subject.keyword量子輸運,電晶體元件,數值模擬及應用,zh_TW
dc.subject.keywordQuantum Transport,Transistors,Modeling and Application,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved