Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55716
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣(Chao-Hsin Wu)
dc.contributor.authorYun-Ting Huangen
dc.contributor.author黃筠婷zh_TW
dc.date.accessioned2021-06-16T04:19:13Z-
dc.date.available2025-07-29
dc.date.copyright2020-08-03
dc.date.issued2020
dc.date.submitted2020-07-29
dc.identifier.citation1. Cisco Annual Internet Report (2018–2023) White Paper. 2018-2023; Available from:
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
2. Forecast: The Internet of Things, Worldwide, 2013. 2013; Available from:
https://www.gartner.com/en/documents/2625419/forecast-the-internet-of-things-worldwide-2013.
3. Challenges and Solutions for EDA of 3D Chip Stacks. 2016; Available from:
https://www.3dincites.com/2016/05/challenges-and-solutions-for-eda-of-3d-chip-stacks/.
4. Van Campenhout, J., et al., Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Optics Express, 2007. 15(11): p. 6744-6749.
5. Tsang, H.K., et al., Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Applied Physics Letters, 2002. 80(3): p. 416-418.
6. Komljenovic, T., et al., Heterogeneous Silicon Photonic Integrated Circuits. Journal of Lightwave Technology, 2016. 34(1): p. 20-35.
7. ITRS 2.0 PUBLICATION. 2015; Available from:
https://www.dropbox.com/s/6eskh6bwdcuzpsa/1507_11_Paolo%20Overview_Out.pdf?dl=0.
8. Augustin, L.M., et al., InP-Based Generic Foundry Platform for Photonic Integrated Circuits. IEEE Journal of Selected Topics in Quantum Electronics, 2018. 24(1): p. 1-10.
9. Welch, D.F., et al., Large-Scale InP Photonic Integrated Circuits: Enabling Efficient Scaling of Optical Transport Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2007. 13(1): p. 22-31.
10. Zirngibl, M., et al. Polarization Independent 8×8 Multiplexer on InP. in Integrated Photonics Research. 1993. Palm Springs, California: Optical Society of America.
11. Winoto, A., et al., Transistor Laser-Integrated Photonics for Optical Logic: Unlocking Unique Electro-Optical Integration Potential to Open Up New Possibilities for Logic Processors. IEEE Nanotechnology Magazine, 2019. 13(2): p. 27-34.
12. Bardeen, J. and W.H. Brattain, The Transistor, A Semi-Conductor Triode. Physical Review, 1948. 74(2): p. 230-231.
13. Feng, M., N.H. Jr., and R. Chan, Quantum-well-base heterojunction bipolar light-emitting transistor. Applied Physics Letters, 2004. 84(11): p. 1952-1954.
14. Feng, M., N.H. Jr., and W. Hafez, Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors. Applied Physics Letters, 2004. 84(1): p. 151-153.
15. Walter, G., et al., Laser operation of a heterojunction bipolar light-emitting transistor. Applied Physics Letters, 2004. 85(20): p. 4768-4770.
16. Wang, H., et al., Analysis of Tunable Internal Loss Caused by Franz–Keldysh Absorption in Transistor Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2015. 21(6): p. 270-276.
17. Feng, M., et al., Tunnel junction transistor laser. Applied Physics Letters, 2009. 94(4): p. 041118.
18. Thorlabs FDS1010-SpecSheet.; Available from:
https://www.thorlabs.com/drawings/8b926499c9d00fa6-27AE6370-944D-9532-0408FF768AFD0D16/FDS1010-CAL-SpecSheet.pdf.
19. Tani, Z., K. Ebina, and K. Nakao, OPIC rotary encoder. Sharp Technical Report, 1983. 26: p. 55.
20. Nakao, K., et al., OPIC photoelectric devices. Sharp Technical Report, 1983. 26: p. 127.
21. Marchina, G., Single-Photon Avalanche Camera for Time-Gated Fluorescence Lifetime Imaging. 2015.
22. Shockley, W., M. Sparks, and G.K. Teal, p− n Junction Transistors. Physical Review, 1951. 83(1): p. 151.
23. Shive, J.N., The properties of germanium phototransistors. JOSA, 1953. 43(4): p. 239-244.
24. Alavi, K.T., R. Markunus, and C. Fonstad. LPE-grown InGaAsP/InP heterojunction bipolar phototransistors. in 1979 International Electron Devices Meeting. 1979. IEEE.
25. Campbell, J., et al., InP/InGaAs heterojunction phototransistors. IEEE Journal of Quantum Electronics, 1981. 17(2): p. 264-269.
26. Fathipour, V., et al., Impact of three-dimensional geometry on the performance of isolated electron-injection infrared detectors. Applied Physics Letters, 2015. 106(2): p. 021116.
27. Bryan, R., et al., Near‐infrared high‐gain strained layer InGaAs heterojunction phototransistors: Resonant periodic absorption. Applied physics letters, 1991. 59(13): p. 1600-1602.
28. Wang, W., et al., Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range. Optics Express, 2017. 25(16): p. 18502-18507.
29. Tan, S., et al. A new model for the phototransistor. in The Fourth International Workshop on Junction Technology, 2004. IWJT'04. 2004. IEEE.
30. Tan, S., et al., The influence of base bias on the collector photocurrent for InGaP∕ GaAs heterojunction phototransistors. Journal of applied physics, 2005. 97(3): p. 034502.
31. Feng, M., et al., Charge control analysis of transistor laser operation. Applied physics letters, 2007. 91(5): p. 053501.
32. Wu, C.-H., et al., 4-GHz Modulation Bandwidth of Integrated 2$\,\times\, $2 LED Array. IEEE Photonics Technology Letters, 2009. 21(24): p. 1834-1836.
33. Stillman, G. and C. Wolfe, Avalanche photodiodes, in Semiconductors and semimetals. 1977, Elsevier. p. 291-393.
34. Thorlab Adjustable Gain Avalanche Photodetectors APD430x Operation Manual. Available from:
https://www.thorlabs.com/drawings/c3abc2a0e1fc03b8-C65B3CB5-CA71-6D32-31D791701BE5D460/APD430A-Manual.pdf.
35. Floyd, T.L., Digital Fundamentals (11th Edition) 1977.
36. Tan, F., et al., Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation. Applied Physics Letters, 2011. 99(6): p. 061105.
37. Then, H.W., et al., Electrical-optical signal mixing and multiplication (2→ 22 GHz) with a tunnel junction transistor laser. Applied Physics Letters, 2009. 94(10): p. 101114.
38. Holonyak, N. and M. Feng, The transistor laser. IEEE Spectrum, 2006. 43(2): p. 50-55.
39. Skumryev, V., et al., Beating the superparamagnetic limit with exchange bias. nature, 2003. 423(6942): p. 850-853.
40. Microsoft: Project Silica. Available from:
https://www.microsoft.com/en-us/research/project/project-silica/.
41. Riesen, N., et al., Towards rewritable multilevel optical data storage in single nanocrystals. Optics Express, 2018. 26(9): p. 12266-12276.
42. 林全財、鄭旺泉, CPLD數位邏輯設計. 2013.
43. Takahashi, H., et al., Transmission characteristics of arrayed waveguide N/spl times/N wavelength multiplexer. Journal of Lightwave Technology, 1995. 13(3): p. 447-455.
44. Dragone, C., An N* N optical multiplexer using a planar arrangement of two star couplers. IEEE Photonics Technology Letters, 1991. 3(9): p. 812-815.
45. Centeno, E., B. Guizal, and D. Felbacq, Multiplexing and demultiplexing with photonic crystals. Journal of Optics A: Pure and Applied Optics, 1999. 1(5): p. L10.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55716-
dc.description.abstract發光電晶體(Light emitting transistor, LET)為一新穎的三端元件,因為其特殊的光電雙輸出特性,可同時作為光發射器、光調變器以及光接收器來使用,且其自發性復合載子生命週期為皮秒等級,可以進行快速的調變,故發光電晶體於光電整合(Opto-Electronics Integrated Circuits, OEICs)領域中具有相當的優勢。
本論文第一部分中將先介紹兩種不同訊號輸入方式的光電邏輯閘,並比較其輸出訊號之延遲情況,以及使用異質接面光電晶體(Heterojunction phototransistor, HPT)和光二極體(Photodiode, PD)做為光偵測器的輸出狀態差異,並提出使用外接電阻來改善電路輸出速度的想法,進而發現輸出訊號之波形穩定性與輸出速度會互相牽制。
第二個部分中,基於單一光電邏輯閘電路的量測結果,我們將兩個反及閘(NAND)中發光電晶體之基極與集極相互連接,形成SR閂鎖器(Latch)電路,來說明發光電晶體邏輯電路之訊號「儲存」特性,並在SR閂鎖器電路中加入時序訊號(Clock)以形成SR正反器(Flip-Flop)電路,透過調整時序訊號可以將輸出訊號控制在一段時間之中,而非整個時間軸。
最後一個部分,將繼續延伸發光電晶體的應用範圍,設計出發光電晶體數據多工器,來證明發光電晶體邏輯電路之「選擇」特性,透過電路中之選擇訊號,可以在兩個輸入訊號中選擇一個作為輸出訊號,且輸入及輸出訊號皆為光訊號的形式,可以確實發揮發光電晶體在光電整合領域之優勢,此為學界首次以發光電晶體整合電路製作出數據多工器之研究。
zh_TW
dc.description.abstractLight emitting transistor (LET) is a novel “three-port” device, which can simultaneously transmit both electrical and optical signals. It can be used as the light transmitter, light modulator, and photodetector in different situations. Additionally, owing to the picosecond level of recombination life time, the LET can be quickly modulated under high frequencies. These characteristics mentioned above make the LET suitable as a building block for optoelectronic logic gate circuits.
In the first part of this thesis, we will introduce two types of optoelectronic logic gates with different input methods and compare the propagation delay of their output signals. Then we analyze the measurement results when using the heterojunction phototransistor (HPT) and the photodiode (PD) as the photodetector. After coming out of the idea of using external resistors to improve the output speed of the circuit, it was found that the waveform stability and the output speed would be a compromise.
As for the second part, we combine two optoelectronics NAND gates together by connecting the base and the collector of them and form the SR latch circuit. This successfully proves that the logic gate circuit based on the LET has the signal “storing” function. By adding a “CLK(clock)” signal into the SR latch circuit, a SR flip-flop circuit can be demonstrated. The output signals can be controlled in a short period of time, rather than of the entire time axis.
In the last part, we continue to expand on the applications of the LET by designing the circuit of the multiplexer. It shows that the logic gate circuit composed of the LETs has the function of “selecting” output signal. We can change the select input signal to choose one of the two input signals to be the output signal. And because the input and output signals are both in the form of optical signals, it can take advantage of the LET for its special dual transmission characteristics. This study is almost the first time fabricating a multiplexer based on the LET in academia.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:19:13Z (GMT). No. of bitstreams: 1
U0001-2907202010415100.pdf: 7114403 bytes, checksum: e6fe79d67bb4a196db5d4b5c4fa878b5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文口試委員審定書 I
誌謝 II
中文摘要 IV
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XIII
第 1 章 緒論 1
1.1 背景介紹 1
1.2 發光電晶體原理與發展 6
1.3 論文導覽 8
第 2 章 不同輸入方式之光電邏輯閘及外接電阻應用 10
2.1 元件磊晶層介紹 10
2.2 光二極體、光電晶體及發光電晶體直流特性 12
2.2.1 直流訊號量測儀器介紹 12
2.2.2 光二極體原理介紹與特性 15
2.2.3 光電晶體原理介紹與特性 19
2.2.4 發光電晶體原理介紹與輸出特性 24
2.3 單石化製程流程 29
2.4 邏輯閘動態量測儀器及架設介紹 32
2.5 光訊號電訊號雙輸入之OR閘 36
2.5.1 OR閘邏輯電路介紹 36
2.5.2 OR閘邏輯量測結果與分析 40
2.5.3 雜訊容限分析 43
2.6 應用不同光偵測器之全光訊號輸入NAND閘 46
2.6.1 NAND閘邏輯電路介紹 46
2.6.2 不同光偵測器之直流特性比較 50
2.6.3 NAND閘邏輯量測結果與分析 52
2.6.4 NAND閘傳遞延遲分析 54
2.7 應用外接電阻法進行邏輯閘量測 57
2.7.1 光訊號電訊號雙輸入之NAND閘邏輯電路介紹 57
2.7.2 外接電阻量測結果與分析 61
2.8 本章結論與未來展望 65
第 3 章 應用光電電晶體開發之光電反及閘SR閂鎖器及SR正反器 67
3.1 反及閘SR閂鎖器 67
3.2 光電NAND閘電路介紹及邏輯功能測試 70
3.3 基於發光電晶體之光電反及閘SR閂鎖器 73
3.3.1 光電反及閘SR閂鎖器電路介紹 73
3.3.2 光電反及閘SR閂鎖器量測架設 77
3.3.3 光電反及閘SR閂鎖器功能驗證 80
3.4 SR正反器 84
3.5 基於發光電晶體之光電反及閘SR正反器 86
3.5.1 光電反及閘SR正反器電路介紹 86
3.5.2 光電反及閘SR正反器量測架設 89
3.5.3 光電反及閘SR正反器量測結果與分析 90
3.6 本章結論與未來展望 94
第 4 章 應用發光電晶體整合之數據多工器 96
4.1 數據多工器 96
4.2 發光電晶體數據多工器 98
4.2.1 發光電晶體數據多工器電路介紹 98
4.2.2 發光電晶體數據多工器量測架設 102
4.2.3 發光電晶體數據多工器量測結果與分析 103
4.3 本章結論與未來展望 107
第 5 章 論文總結 108
參考文獻 110
附錄 114
dc.language.isozh-TW
dc.subject發光電晶體zh_TW
dc.subject異質接面光電晶體zh_TW
dc.subject光二極體zh_TW
dc.subject光電積體整合電路zh_TW
dc.subject光電SR閂鎖器zh_TW
dc.subject光電SR正反器zh_TW
dc.subject數據多工器zh_TW
dc.subjectOptoelectronics SR flip-flopen
dc.subjectlight emitting transistoren
dc.subjectheterojunction phototransistoren
dc.subjectmultiplexeren
dc.subjectphotodiodeen
dc.subjectOpto-Electronic Integrated Circuitsen
dc.subjectOptoelectronics SR latchen
dc.title應用發光電晶體開發之光電反及閘SR閂鎖器與數據多工器
zh_TW
dc.titleResearch on OptoElectronic NAND Gate SR Latch and Multiplexer Based on Light-Emitting Transistorsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧廷昌(Tien-Chang Lu),吳育任(Yuh-Renn Wu),張書維(Shu-Wei Chang)
dc.subject.keyword發光電晶體,異質接面光電晶體,光二極體,光電積體整合電路,光電SR閂鎖器,光電SR正反器,數據多工器,zh_TW
dc.subject.keywordlight emitting transistor,heterojunction phototransistor,photodiode,Opto-Electronic Integrated Circuits,Optoelectronics SR latch,Optoelectronics SR flip-flop,multiplexer,en
dc.relation.page116
dc.identifier.doi10.6342/NTU202002021
dc.rights.note有償授權
dc.date.accepted2020-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2907202010415100.pdf
  未授權公開取用
6.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved