請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55684
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宜玲 | |
dc.contributor.author | Hsin-Yi Wu | en |
dc.contributor.author | 吳心怡 | zh_TW |
dc.date.accessioned | 2021-06-16T04:17:10Z | - |
dc.date.available | 2019-10-09 | |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-20 | |
dc.identifier.citation | 1. King NJ, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM. 2007. Immunopathology of flavivirus infections. Immunol Cell Biol 85:33-42.
2. Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13-22. 3. Sampath A, Padmanabhan R. 2009. Molecular targets for flavivirus drug discovery. Antiviral Res 81:6-15. 4. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lecar J, Heinz FX, Rey FA. 2004. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23:728-738. 5. Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A. 2009. Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe 5:318-328. 6. Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG. 2008. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830-1834. 7. Ackermann M, Padmanabhan R. 2001. De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276:39926-39937. 8. Egloof MP, Benarroch D, Selisko B, Romette JL, Canard B. 2002. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J. 21:2757-2768. 9. Poch O, Sauvaget I, Delarue M, Tordo N. 1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8:3867-3874. 10. Kim YG, Yoo JS, Kim JH, Kim CM, Oh JW. 2007. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC Mol Biol 8:59. 11. Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449:819-826. 12. Elinav E, Strowig T, Henao-Mejia J, Flavell RA. 2011. Regulation of the antimicrobial response by NLR proteins. Immunity 34:665-679. 13. Randall RE, Goodbourn S. 2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1-47. 14. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981-988. 15. Loo YM, Gale M, Jr. 2011. Immune signaling by RIG-I-like receptors. Immunity 34:680-692. 16. Aaronson DS, Horvath CM. 2002. A road map for those who don't know JAK-STAT. Science 296:1653-1655. 17. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. 1998. How cells respond to interferons. Annu Rev Biochem 67:227-264. 18. Bowie AG, Unterholzner L. 2008. Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8:911-922. 19. Schoggins JW, Rice CM. 2011. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519-525. 20. Der SD, Zhou AM, Williams BRG, Silverman RH. 1998. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95:15623-15628. 21. Ivashkiv LB, Donlin LT. 2014. Regulation of type I interferon responses. Nat Rev Immunol 14:36-49. 22. Yu GY, He G, Li CY, Tang M, Grivennikov S, Tsai WT, Wu MS, Hsu CW, Tsai Y, Wang LH, Karin M. 2012. Hepatic expression of HCV RNA-dependent RNA polymerase triggers innate immune signaling and cytokine production. Mol Cell 48:313-321. 23. Nikonov A, Molder T, Sikut R, Kiiver K, Mannik A, Toots U, Lulla A, Lulla V, Utt A, Merits A, Ustav M. 2013. RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog 9:e1003610. 24. Moriyama M, Kato N, Otsuka M, Shao RX, Taniguchi H, Kawabe T, Omata M. 2007. Interferon-beta is activated by hepatitis C virus NS5B and inhibited by NS4A, NS4B, and NS5A. Hepatol Int 1:302-310. 25. Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL. 2006. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80:5908-5918. 26. Lin YL, Liao CL, Chen LK, Yeh CT, Liu CI, Ma SH, Huang YY, Huang YL, Kao CL, King CC. 1998. Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J Virol 72:9729-9737. 27. Liu XY, Wei B, Shi HX, Shan YF, Wang C. 2010. Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res 20:994-1011. 28. West AP, Shadel GS, Ghosh S. 2011. Mitochondria in innate immune responses. Nat Rev Immunol 11:389-402. 29. Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N. 2008. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 9:42-49. 30. Binder M, Eberle F, Seitz S, Mucke N, Huber CM, Kiani N, Kaderali L, Lohmann V, Dalpke A, Bartenschlager R. 2011. Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I). J Biol Chem 286:27278-27287. 31. Hornung V, Ellegast J, Kim S, Brzozka K, June A, Kato H, Poeck H, Akira S, Conzelmann K, Schlee M, Endres S, Hartmann G. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994-997. 32. Baum A, Sachidanandam R, Garcia-Sastre A. 2010. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc Natl Acad Sci U S A 107:16303-16308. 33. Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR. 2006. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24:559-565. 34. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276-289. 35. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105. 36. Bonin M, Oberstrass J, Lukacs N, Ewert K, Oesterschulze E, Kassing R, Nellen W. 2000. Determination of preferential binding sites for anti-dsRNA antibodies on double-stranded RNA by scanning force microscopy. RNA 6:563-570. 37. Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K. 2001. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3:158-164. 38. Cho JA, Lee AH, Platzer B, Cross BC, Gardner BM, De Luca H, Luong P, Harding HP, Glimcher LH, Walter P, Fiebiger E, Ron D, Kagan JC, Lencer WI. 2013. The unfolded protein response element IRE1alpha senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling. Cell Host Microbe 13:558-569. 39. Chen Y, Brandizzi F. 2013. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23:547-555. 40. Yu CY, Hsu YW, Liao CL, Lin YL. 2006. Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol 80:11868-11880. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55684 | - |
dc.description.abstract | 當細胞的Pattern Recognition Receptors (PRRs)偵測到病毒入侵時,透過pathogen-associated molecular patterns (PAMPs)與PRRs結合,刺激下游NF-κB,MAPK,以及IRFs等蛋白,開啟第一型干擾素(type I interferons)基因表現的激活途徑,來活化自身與周圍細胞進入抗病毒狀態。目前已知日本腦炎病毒的感染可引發高量的第一型干擾素產生,但日本腦炎病毒誘導第一型干擾素產生的機制仍不是很清楚。先前實驗室曾發現將具有複製酶活性(RNA-dependent RNA polymerase; RdRp)的日本腦炎病毒蛋白NS5送入在細胞中,可以活化帶有第一型干擾素promoter的 p125-Luc reporter質體。因此,在本篇論文中,我們試圖瞭解日本腦炎病毒蛋白NS5誘導第一型干擾素產生的機制。在過度表現正常(wild type)或是不具RdRp活性(RdRp-dead)的突變NS5病毒蛋白的細胞中,只有正常的NS5病毒蛋白能活化第一型干擾素的promoter、與interferon-stimulated基因(ISGs)的表現,而且過度表現正常的NS5病毒蛋白細胞的培養基中具有對抗Sindbis病毒的成分。利用帶有簪子干擾性核醣核酸(shRNAs)的慢病毒(lentivirus),將細胞中負責誘發干擾素路徑的蛋白進行核酸干擾作用(RNA interference),結果發現RIG-I,MAVS以及Tom70對於NS5病毒蛋白誘導第一型干擾素的產生是不可或缺的。不過,NS5病毒蛋白引發第一型干擾素產生的量,並不足以保護細胞對抗登革病毒的感染,但能夠增加細胞對外加低劑量干擾素的抗病毒反應。有趣的是,過度表現正常的NS5病毒蛋白的細胞中,有雙股RNA (dsRNA)的產生,並且被粒線體所圍繞著。總結,在本論文研究中,我們發現日本腦炎病毒NS5的複製酶活性可催化雙股RNA,細胞透過偵測雙股RNA,進而誘導第一型干擾素產生。 | zh_TW |
dc.description.abstract | Induction of type I interferons (IFNs) is triggered after sensing of pathogens by pattern-recognition receptors (PRRs). Binding of PRRs with their ligands, pathogen-associated molecular patterns, stimulates signaling pathways that culminate in the activation of nuclear factors-κB, mitogen-activated protein kinase, and interferon regulatory factors to turn on IFNs expression. Japanese encephalitis virus (JEV) infection can trigger high level of interferon-β (IFN-β) gene expression, but exactly how JEV induces IFN-β production is not clear. Our preliminary data showed that expression of JEV NS5, a RNA-dependent RNA polymerase (RdRp), can activate reporter plasmid p125-Luc containing IFN-β promoter. Thus, this thesis study aims to assess the effect of NS5 on inducing IFN production. We established human A549 cell lines overexpressing wild type (WT) or RdRp-dead mutant (AAG) of NS5. Higher activation of IFN-β gene promoter and IFN-stimulated genes (ISGs) expression were detected in WT NS5-expressing cells when compared to the AAG-mutant. Consequently, antiviral activity against an IFN-sensitive Sindbis reporter virus was detected in the culture supernatant of NS5-expressing cells. By knocking down RNA sensors (RIG-I and MDA5) and adaptors (MAVS and Tom70) in NS5-expressing A549 cells, we found that RIG-I/MAVS and Tom70 are critical in the NS5-induced IFN-β production, whereas MDA5 is dispensable. Furthermore, mitochondria-localized dsRNA signals were detected in NS5-expressing cells. The IFN-induced by JEV NS5 was not sufficient to block the infection of dengue virus in the surrounding non-NS5 expressing cells, but it can sensitize the surrounding cells to exogenously added low dose of IFN. Thus, in this thesis study, we identify RdRp activity of NS5 can catalyze the formation of dsRNA and through RNA sensing that IFN production is turned on. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T04:17:10Z (GMT). No. of bitstreams: 1 ntu-103-R01445130-1.pdf: 6455230 bytes, checksum: bfe8c894cb9f5d214d41653d586f7be8 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Abstract------------------------------------------------------------------------------- i
中文摘要------------------------------------------------------------------------------ iii Contents------------------------------------------------------------------------------- iv 圖目錄--------------------------------------------------------------------------------- v Introduction--------------------------------------------------------------------------- 1 Specific aims------------------------------------------------------------------------- 5 Materials and methods-------------------------------------------------------------- 6 Results--------------------------------------------------------------------------------- 15 Discussion---------------------------------------------------------------------------- 22 References---------------------------------------------------------------------------- 26 Figures--------------------------------------------------------------------------------- 30 Appendix------------------------------------------------------------------------------ 50 | |
dc.language.iso | en | |
dc.title | 探討日本腦炎病毒NS5蛋白對於第一型干擾素產生的影響 | zh_TW |
dc.title | The effect of Japanese encephalitis virus nonstructural protein NS5 on type I interferon induction | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳美如,林仁傑,余冠儀 | |
dc.subject.keyword | 日本腦炎病毒,干擾素, | zh_TW |
dc.subject.keyword | JEV,NS5,interferon, | en |
dc.relation.page | 68 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 6.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。