請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55680完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳(Wei-Fang Su) | |
| dc.contributor.author | Tzu-Hsiang Shih | en |
| dc.contributor.author | 時子翔 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:16:54Z | - |
| dc.date.available | 2019-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | 1. 行政院衛生署, 全國主要死亡原因統計. 2012.
2. Olivetti, G.; Capasso, J. M.; Meggs, L. G.; Sonnenblick, E. H.; Anversa, P., Cellular Basis of Chronic Ventricular Remodeling after Myocardial-Infarction in Rats. Circ Res 1991, 68 (3), 856-869. 3. Rosenzweig, A., Cardiac cell therapy - Mixed results from mixed cells. New Engl J Med 2006, 355 (12), 1274-1277. 4. Orlic, D.; Kajstura, J.; Chimenti, S.; Bodine, D. M.; Leri, A.; Anversa, P., Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 2003, 7, 86-88. 5. Taylor, D. A.; Atkins, B. Z.; Hungspreugs, P.; Jones, T. R.; Reedy, M. C.; Hutcheson, K. A.; Glower, D. D.; Kraus, W. E., Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998, 4 (8), 929-933. 6. Klug, M. G.; Soonpaa, M. H.; Koh, G. Y.; Field, L. J., Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 1996, 98 (1), 216-224. 7. Wu, J.; Zeng, F. Q.; Weisel, R. D.; Li, R. K., Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering. Adv Biochem Eng Biot 2009, 114, 107-128. 8. 李宣書, 淺談組織工程. 物理雙月刊 2001, 24 (3), 430-435. 9. Behonick, D. J.; Werb, Z., A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mech Develop 2003, 120 (11), 1327-1336. 10. Franceschi, R. T.; Iyer, B. S., Relationship between Collagen-Synthesis and Expression of the Osteoblast Phenotype in Mc3t3-E1 Cells. J Bone Miner Res 1992, 7 (2), 235-246. 11. Lan, C. W.; Wang, F. F.; Wang, Y. J., Osteogenic enrichment of bone-marrow stromal cells with the use of flow chamber and type I collagen-coated surface. J Biomed Mater Res A 2003, 66A (1), 38-46. 12. Beltrami, C. A.; Finato, N.; Rocco, M.; Feruglio, G. A.; Puricelli, C.; Cigola, E.; Quaini, F.; Sonnenblick, E. H.; Olivetti, G.; Anversa, P., Structural Basis of End-Stage Failure in Ischemic Cardiomyopathy in Humans. Circulation 1994, 89 (1), 151-163. 13. Leor, J.; Amsalem, Y.; Cohen, S., Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Therapeut 2005, 105 (2), 151-163. 14. Beltrami, A. P.; Barlucchi, L.; Torella, D.; Baker, M.; Limana, F.; Chimenti, S.; Kasahara, H.; Rota, M.; Musso, E.; Urbanek, K.; Leri, A.; Kajstura, J.; Nadal-Ginard, B.; Anversa, P., Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114 (6), 763-776 15. Leor, J.; Aboulafia-Etzion, S.; Dar, A.; Shapiro, L.; Barbash, I. M.; Battler, A.; Granot, Y.; Cohen, S., Bioengineered cardiac grafts - A new approach to repair the infarcted myocardium? Circulation 2000, 102 (19), 56-61. 16. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284 (5411), 143-147. 17. Kocher, A. A.; Schuster, M. D.; Szabolcs, M. J.; Takuma, S.; Burkhoff, D.; Wang, J.; Homma, S.; Edwards, N. M.; Itescu, S., Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001, 7 (4), 430-436. 18. Klug, M. G.; Soonpaa, M. H.; Koh, G. Y.; Field, L. J., Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 1996, 98 (1), 216-224. 19. Zhang, M.; Methot, D.; Poppa, V.; Fujio, Y.; Walsh, K.; Murry, C. E., Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. J Mol Cell Cardiol 2001, 33 (5), 907-921. 20. Nam, Y. S.; Park, T. G., Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 1999, 47 (1), 8-17. 21. Whang, K.; Thomas, C. H.; Healy, K. E.; Nuber, G., A Novel Method to Fabricate Bioabsorbable Scaffolds. Polymer 1995, 36 (4), 837-842. 22. Mikos, A. G.; Thorsen, A. J.; Czerwonka, L. A.; Bao, Y.; Langer, R.; Winslow, D. N.; Vacanti, J. P., Preparation and Characterization of Poly(L-Lactic Acid) Foams. Polymer 1994, 35 (5), 1068-1077. 23. Mooney, D. J.; Baldwin, D. F.; Suh, N. P.; Vacanti, L. P.; Langer, R., Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996, 17 (14), 1417-1422. 24. Anton, F., 'Process and apparatus for preparing artificial threads,' 1934, US Patents 1975504. 25. Anton, F., 'Method and apparatus for spinning,' 1939, US Patents 2160962. 26. Anton, F., 'Production of artificial fibers from fiber forming liquids,' 1943, US Patents 2323025. 27. Taylor, G., Electrically Driven Jets. Proceedings of the Royal Society of London Series-A 1969, 313 (1515), 453-475. 28. Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C., Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001, 42 (25), 9955-9967. 29. Li, D.; Xia, Y. N., Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters 2004, 4 (5), 933-938 30. Chew, S. Y.; Wen, J.; Yim, E. K. F.; Leong, K. W., Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005, 6 (4), 2017-2024. 31. Wang, X.; Ding, B.; Li, B., Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today 2013, 16 (6), 229-241. 32. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35 (22), 8456-8466. 33. Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 2004, 37 (2), 573-578. 34. Jaeger, R.; Bergshoef, M. M.; Batlle, C. M. I.; Schonherr, H.; Vancso, G. J., Electrospinning of ultra-thin polymer fibers. Macromol Symp 1998, 127, 141-150. 35. Meechaisue, C.; Dubin, R.; Supaphol, P.; Hoven, V. P.; Kohn, J., Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. Journal of Biomaterials Science, Polymer Edition 2006, 17 (9), 1039-1056. 36. Sui, G.; Yang, X.; Mei, F.; Hu, X.; Chen, G.; Deng, X.; Ryu, S., Poly‐L‐lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A 2007, 82 (2), 445-454. 37. Xu, C.; Inai, R.; Kotaki, M.; Ramakrishna, S., Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 2004, 25 (5), 877-886. 38. Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S., Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26 (15), 2603-2610. 39. Sahoo, S.; Ouyang, H.; Goh, J. C.-H.; Tay, T.; Toh, S., Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 2006, 12 (1), 91-99. 40. Eschenhagen, T.; Fink, C.; Remmers, U.; Scholz, H.; Wattchow, J.; Weil, J.; Zimmermann, W.; Dohmen, H.; Schafer, H.; Bishopric, N., Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. The FASEB Journal 1997, 11 (8), 683-694. 41. Kofidis, T.; Lebl, D. R.; Martinez, E. C.; Hoyt, G.; Tanaka, M.; Robbins, R. C., Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 2005, 112 (9 suppl), I-173-I-177. 42. Xiang, Z.; Liao, R.; Kelly, M. S.; Spector, M., Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue Eng 2006, 12 (9), 2467-2478. 43. Entcheva, E.; Bien, H.; Yin, L.; Chung, C.-Y.; Farrell, M.; Kostov, Y., Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 2004, 25 (26), 5753-5762. 44. Yu, D.; Wang, X.; Li, X.; Chian, W.; Li, Y.; Liao, Y., Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta biomaterialia 2013, 9 (3), 5665-5672. 45. Takata, T.; Miyauchi, M.; Wang, H. L., Migration of osteoblastic cells on various guided bone regeneration membranes. Clinical oral implants research 2001, 12 (4), 332-338. 46. Kino, Y.; Sawa, M.; Kasai, S.; Mito, M., Multiporous cellulose microcarrier for the development of a hybrid artificial liver using isolated hepatocytes. Journal of Surgical Research 1998, 79 (1), 71-76. 47. Venugopal, J. R.; Prabhakaran, M. P.; Mukherjee, S.; Ravichandran, R.; Dan, K.; Ramakrishna, S., Biomaterial strategies for alleviation of myocardial infarction. Journal of The Royal Society Interface 2012, 9 (66), 1-19. 48. Giraud, M.-N.; Armbruster, C.; Carrel, T.; Tevaearai, H. T., Current state of the art in myocardial tissue engineering. Tissue Eng 2007, 13 (8), 1825-1836. 49. Carrier, R. L.; Papadaki, M.; Rupnick, M.; Schoen, F. J.; Bursac, N.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G., Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and bioengineering 1999, 64 (5), 580-589. 50. Ishii, O.; Shin, M.; Sueda, T.; Vacanti, J. P., In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix–like topography. The Journal of thoracic and cardiovascular surgery 2005, 130 (5), 1358-1363. 51. Piao, H.; Kwon, J.-S.; Piao, S.; Sohn, J.-H.; Lee, Y.-S.; Bae, J.-W.; Hwang, K.-K.; Kim, D.-W.; Jeon, O.; Kim, B.-S., Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials 2007, 28 (4), 641-649. 52. Santerre, J.; Woodhouse, K.; Laroche, G.; Labow, R., Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005, 26 (35), 7457-7470. 53. Krol, P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in materials science 2007, 52 (6), 915-1015. 54. Stokes, K.; McVenes, R.; Anderson, J. M., Polyurethane elastomer biostability. Journal of biomaterials applications 1995, 9 (4), 321-354. 55. Guelcher, S. A., Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Engineering Part B: Reviews 2008, 14 (1), 3-17. 56. Fujimoto, K. L.; Guan, J.; Oshima, H.; Sakai, T.; Wagner, W. R., In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. The Annals of thoracic surgery 2007, 83 (2), 648-654. 57. Guan, J.; Wagner, W. R., Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules 2005, 6 (5), 2833-2842. 58. Cardy, R. H., Carcinogenicity and chronic toxicity of 2, 4-toluenediamine in F344 rats. Journal of the National Cancer Institute 1979, 62 (4), 1107-1116. 59. Fujimoto, K. L.; Tobita, K.; Merryman, W. D.; Guan, J.; Momoi, N.; Stolz, D. B.; Sacks, M. S.; Keller, B. B.; Wagner, W. R., An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol 2007, 49 (23), 2292-2300. 60. Siepe, M.; Giraud, M. N.; Liljensten, E.; Nydegger, U.; Menasche, P.; Carrel, T.; Tevaearai, H. T., Construction of Skeletal Myoblast‐Based Polyurethane Scaffolds for Myocardial Repair. Artificial organs 2007, 31 (6), 425-433. 61. Dusek, K., Theory of Network Formation by Additional Cross-Linking of Polyurethanes Due to Biuret and Allophanate Formation. Polym Bull 1987, 17 (5), 481-488. 62. Eichhorn, S. J.; Sampson, W. W., Statistical geometry of pores and statistics of porous nanofibrous assemblies. Journal of the Royal Society Interface 2005, 2 (4), 309-318. 63. Bashur, C. A.; Dahlgren, L. A.; Goldstein, A. S., Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials 2006, 27 (33), 5681-5688. 64. Sakamoto, H.; Asakawa, H.; Fukuma, T.; Fujita, S.; Suye, S., Atomic force microscopy visualization of hard segment alignment in stretched polyurethane nanofibers prepared by electrospinning. Science and Technology of Advanced Materials 2014, 15 (1). 65. Badami, A. S.; Kreke, M. R.; Thompson, M. S.; Riffle, J. S.; Goldstein, A. S., Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2006, 27 (4), 596-606. 66. Chen, Q. Z.; Harding, S. E.; Ali, N. N.; Lyon, A. R.; Boccaccini, A. R., Biomaterials in cardiac tissue engineering: Ten years of research survey. Mat Sci Eng R 2008, 59 (1-6), 1-37. 67. Wall, S. T.; Walker, J. C.; Healy, K. E.; Ratcliffe, M. B.; Guccione, J. M., Theoretical impact of the injection of material into the myocardium - A finite element model simulation. Circulation 2006, 114 (24), 2627-2635. 68. Zhang, S.; Crow, J. A.; Yang, X. Y.; Chen, J.; Borazjani, A.; Mullins, K. B.; Chen, W.; Cooper, R. C.; McLaughlin, R. M.; Liao, J., The Correlation of 3D DT-MRI Fiber Disruption with Structural and Mechanical Degeneration in Porcine Myocardium. Annals of Biomedical Engineering 2010, 38 (10), 3084-3095. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55680 | - |
| dc.description.abstract | 心臟衰竭為一種高死亡率的心血管疾病,透過心臟組織工程的應用,受損的心肌組織可經由心臟支架來進行取代及修復,心臟支架不僅提昇心肌組織的功能,也能改善心臟重塑。在心臟組織工程上,支架必須是具有多孔性、彈性、生物降解性、生物相容性以及相似的機械性質,以匹配原有的心肌組織。靜電紡絲為一種常用於製備成奈米纖維支架的技術,其奈米纖維支架的結構相似於細胞外基質,且具備極高的表面積與相互連通的孔洞。而聚氨酯脲為一種兼具彈性與韌性特性的合成高分子,於心臟組織工程上常被選為適合的生醫材料;乙基纖維素則為一種經由化學改質的纖維素,其展現良好的可塑性、有機溶劑溶解性、良好的生物相容性與優良的機械性質。因此,由聚氨酯脲與乙基纖維素所結合的複合生醫材料,擁有應用於心臟組織工程的前景與潛力。
在本篇論文中,我們利用聚己內酯(polycaprolactone diols, PCL diols)、異佛爾酮二異氰酸酯(isophorone diisocyanate, IPDI)與1,4-二氨基丁烷(1,4-diaminobutane, DAB)合成出生物可降解聚氨酯脲。同時透過以二甲基乙醯胺為溶劑之靜電紡絲技術,將聚氨酯脲加工為多孔纖維支架,進而探討不同纖維寬度、不同乙基纖維素混參比例、與纖維方向性的有無,對H9C2細胞(大鼠心肌細胞株)生長情形的影響。聚氨酯脲的化學結構與分子量可分別藉由傅立葉轉換紅外線光譜確認與凝膠滲透層析來進行檢測。聚氨酯脲與乙基纖維素的分子量分別為68kDa與61kDa。聚氨酯脲的熱性質、機械性質與黏彈性質顯示出其具有良好的彈性與機械強度。 本研究結果發現,較粗的纖維支架擁有較高的機械性質與降解速率,且細胞貼附生長的速率較快。我們同時混摻乙基纖維素來提高纖維支架的機械性質與生物相容性。在5:5、7:3與9:1三種聚氨酯脲與乙基纖維素的混摻比例中,是以9:1擁有較佳的細胞生長速率與形貌,此外,我們利用滾筒式收集器來製備有方向性排列結構的纖維支架,有方向性排列的纖維支架較無方向性排列的纖維支架,擁有較高的楊氏模數與拉伸強度;而相比於無方向性排列的纖維支架,在有方向性排列纖維支架上所生長的H9C2細胞,展現出更明顯的伸展形貌與排列方式。因此,有方向性排列的可降解聚氨酯脲/乙基纖維素纖維支架,可作為協助受損心肌組織修補的高潛在性生醫材料。 | zh_TW |
| dc.description.abstract | Heart failure is a major cardiovascular disease with high mortality. Via the application of cardiac tissue engineering, damaged myocardium can be replaced by cardiac scaffold. The cardiac scaffold can not only enhance cardiac function but also improve cardiac remodeling. In cardiac tissue engineering, scaffolds must be porous, resilient, biodegradable, biocompatible and similar mechanical properties matching with native tissue. Electrospin is a promising technique to fabricate nanofibrous scaffold which is mimic the structure of extracellular matrix (ECM) and provides high surface area with interconnecting pores. Polyurethane urea have been considered good candidates with its elasticity and toughness for utilizing in cardiac tissue engineering. Ethyl cellulose(EC) as a kind of chemically modified cellulose exhibits excellent plasticity, good solubility in organic solvents, biocompatibility and high mechanical intensity. Therefore, combination of polyurethane urea and ethyl cellulose as a composite biomaterial possesses promising potential in realistic application of cardiac tissue engineering.
In this study, we have synthesized biodegradable polyurethane urea from polycaprolactone diols (PCL), isophorone diisocyanate (IPDI) and 1,4-diaminobutane (DAB) by reacting PCL diols with IPDI first then with DAB. Polyurethane urea were further fabricated into fibrous scaffolds by electrospinning using dimethylacetamide (DMAc) as a solvent. We investigated the effect on H9C2 cells growth by changing fiber width, the blending ratio of ethyl cellulose and alignment of fibrous scaffold. The chemical structure of synthesized polyurethane urea was confirmed by IR and its molecular weight was determined by GPC. The molecular weight of polyurethane urea and ethyl cellulose were 68kDa and 61kDa respectively. Their thermal, mechanical, and viscoelastic properties were also investigated to exhibit high elasticity and strength. The scaffold with wider fibers have higher tensile strength and degradation rate. More increasing cell amount rate was discovered on the scaffold with width fibers. We also blended polyurethane urea with ethyl cellulose which enhance its mechanical properties and biocompatibility. In three different blending ratio(5:5, 7:3 and 9:1), H9C2 cells exhibit better morphology and growing rate on the scaffold with 9:1 blending. In addition, we fabricated scaffold with aligned fibers by employing a rolling collector. Aligned scaffold show higher Young’s modulus and tensile strength as compared to isotropic one. The H9C2 cells cultured on aligned fibers showed more pronounced elongation and better alignment compared to those cultured on random fibers. In summary, aligned electrospun biodegradable polyurethane urea/EC scaffold has potential for the repair of damaged heart tissue. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:16:54Z (GMT). No. of bitstreams: 1 ntu-103-R01549026-1.pdf: 3292061 bytes, checksum: 1915ec69ec5d31d3080f5af4285af623 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 VIII 第一章 前言與文獻回顧 1 1.1 心臟衰竭起因與治療 1 1.2 組織工程 2 1.3 靜電紡絲簡介與原理 5 1.4 高分子生醫材料 7 1.4.1 天然高分子 7 1.4.2 生物可降解之合成高分子 8 1.5 生物可降解聚氨酯脲 9 1.5.1 聚氨酯與聚氨酯脲的合成與微相分離 9 1.5.2 聚氨酯與聚氨酯脲的生物可降解性與生物相容性 11 1.6 研究目標與材料設計 13 第二章 實驗材料與方法 15 2.1 實驗材料與儀器 15 2.1.1實驗用藥品 15 2.1.2 聚氨酯的合成步驟 17 2.1.3 儀器與量測 18 2.2 聚氨酯的基本物性測量 20 2.2.1 凝膠滲透層析 20 2.2.2 傅立葉轉換紅外線光譜分析 20 2.2.3 示差掃描熱分析儀 20 2.2.4 動態機械分析儀 21 2.3 靜電紡絲支架製備 21 2.3.1 高分子溶液配置 21 2.3.2 靜電紡絲 21 2.4 纖維支架生物檢測 23 2.4.1 材料降解測試 23 2.4.2 細胞培養 23 2.4.3 生物相容性測試 24 2.4.4 拉伸實驗 25 2.3.5 掃描式電子顯微鏡 26 第三章 結果與討論 28 3.1 聚氨酯脲的基本物性 28 3.1.1 合成步驟分析 28 3.1.2 聚氨酯脲與乙基纖維素的分子量 30 3.1.3 熱分析 31 3.1.4 聚氨酯脲的黏彈性質 33 3.2 靜電紡絲參數調控纖維寬度 34 3.3 不同纖維寬度支架的特性與生物相容性 37 3.3.1 纖維支架的機械性質 37 3.3.2 生物降解實驗 39 3.3.3 生物相容性測試與纖維寬度對細胞生長影響 41 3.4 不同乙基纖維素混摻比例對細胞生長與機械性質的影響 43 3.4.1 混摻乙基纖維素纖維支架的機械性質 43 3.4.2 不同乙基纖素混摻比例其纖維支架對細胞生長的影響與形貌 45 3.5 不同排列結構的纖維支架其機械性質與生物相容性 47 3.5.1 不同排列結構的纖維支架之生物相容性與細胞形貌 47 3.5.2 不同排列結構的纖維支架其機械性質 50 第四章 結論 52 第五章 建議與未來工作 53 參考文獻 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心臟組織工程 | zh_TW |
| dc.subject | 聚氨酯? | zh_TW |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | electrospinning | en |
| dc.subject | cardiac tissue engineering | en |
| dc.subject | polyurethane urea | en |
| dc.title | 用於心臟修復之生物可降解聚氨酯脲奈米纖維支架的製備與特性 | zh_TW |
| dc.title | Preparation and Characterization of Electrospun Biodegradable Polyurethane Urea Scaffold for Cardiac Repair | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭如忠,游佳欣,陳達慶 | |
| dc.subject.keyword | 聚氨酯?,靜電紡絲,心臟組織工程, | zh_TW |
| dc.subject.keyword | polyurethane urea,electrospinning,cardiac tissue engineering, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
