請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康仕仲(Shih-Chung Kang) | |
| dc.contributor.author | Wei-Yu Lin | en |
| dc.contributor.author | 林威宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:15:44Z | - |
| dc.date.available | 2014-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | Acar, A. and Muraki, Y. (2011). 'Twitter for crisis communication: lessons learned from Japan’s tsunami disaster.' International Journal of Web Based Communities, 7(3), 392-402.
Atoji, Y., Koiso, T., Nakatani, M. and Nishida, S. (2004). 'An information filtering method for emergency management.' Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), 147(1), 60-69. Brabham, D. C. (2008). 'Crowdsourcing as a model for Problem solving an introduction and cases.' Convergence, 14(1), 75-90. Central Board of Secondary Education (CBSE) (2006), Natural Hazards and Disaster Management, Preet Vihar, Delhi. Commission on the Prevention of Weapons of Mass Destruction Proliferation and Terrorism (U.S.) (2008). World at Risk: The Report of the Commission on the Prevention of Weapons of Mass Destruction Proliferation and Terrorism, Vintage, New York. Corvey, W. J., Vieweg, S., Rood, T. and Palmer, M. (2010). 'Twitter in mass emergency: what NLP techniques can contribute.' Proceedings of the NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, Association for Computational Linguistics, Los Angeles, California, 23-24. Dugdale, J., Walle, B. V. d. and Koeppinghoff, C. (2012). 'Social media and SMS in the haiti earthquake.' Proceedings of the 21st international conference companion on World Wide Web, ACM, Lyon, France, 713-714. Foster, I. and Grossman, R. L. (2003). 'Data integration in a bandwidth-rich world.' Communications of the ACM, 46(11), 50-57. Giles, J. (2005). 'Wisdom of the crowd.' Nature, 438(7066), 281-281. Golbeck, J., Grimes, J. M. and Rogers, A. (2010). 'Twitter use by the U.S. Congress.' Journal of the American Society for Information Science and Technology, 61(8), 1612-1621. Goodchild, M. F. and Glennon, J. A. (2010). 'Crowdsourcing geographic information for disaster response: a research frontier.' International Journal of Digital Earth, 3(3), 231-241. Grosseck, G. and Holotescu, C. (2008). 'Can we use twitter for educational activities?' 4th Scientific Conference, elearning and Software for Education, Bucharest, Romania. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. H. (2009). 'The WEKA data mining software: an update.' ACM SIGKDD explorations newsletter, 11(1), 10-18. Helsloot, I. R. A. (2008). 'Coordination is a prerequisite for good collaboration, isn't it?' Journal of Contingencies and Crisis Management, 16(4), 173-176. Hristidis, V., Chen, S. C., Li, T., Luis, S. and Deng, Y. (2010). 'Survey of data management and analysis in disaster situations.' Journal of Systems and Software, 83(10), 1701-1714. Huang, C. M., Chan, E. and Hyder, A. (2010). 'Web 2.0 and Internet social networking: a new tool for disaster management? - Lessons from Taiwan.' BMC Medical Informatics and Decision Making, 10(1), 1-5. Kongthon, A., Haruechaiyasak, C., Pailai, J. and Kongyoung, S. 'The role of Twitter during a natural disaster: Case study of 2011 Thai Flood.' Proceedings of the Technology Management for Emerging Technologies (PICMET), IEEE. Kulkarni, A., Can, M. and Hartmann, B. (2012). 'Collaboratively crowdsourcing workflows with turkomatic.' Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, ACM, Seattle, Washington, USA, 1003-1012. Lee, J. and Bui, T. (2000). 'A template-based methodology for disaster management information systems.' Proceedings of the 33rd Hawaii International Conference on System Sciences, IEEE Computer Society 1050. Letierce, J., Passant, A., Breslin, J. and Decker, S. (2010). 'Understanding how Twitter is used to widely spread Scientific Messages.' Web Science Conference. Malone, T. W., Grant, K. R., Lai, K.-Y., Rao, R. and Rosenblitt, D. (1987). 'Semistructured messages are surprisingly useful for computer-supported coordination.' ACM Transactions on Information Systems, 5(2), 115-131. Mendoza, M., Poblete, B. and Castillo, C. (2010). 'Twitter under crisis: can we trust what we RT?' Proceedings of the First Workshop on Social Media Analytics, ACM, Washington D.C., District of Columbia, 71-79. National Fire Agency (NFA), ROC (2011). 'Disaster responses reports of Morakot.' (in Chinese) Palen, L., Vieweg, S. and Anderson, K. M. (2011). 'Supporting 'Everyday analysts' in safety and time-critical situations.' The Information Society, 27(1), 52-62. Qu, Y., Huang, C., Zhang, P. and Zhang, J. (2011). 'Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake.' Proceedings of the ACM 2011 conference on Computer supported cooperative work, ACM, Hangzhou, China, 25-34. Quinlan, J. R. (1993). C4. 5: programs for machine learning, Morgan Kaufmann. Rawls, C. G. and Turnquist, M. A. (2010). 'Pre-positioning of emergency supplies for disaster response.' Transportation Research Part B: Methodological, 44(4), 521-534. Schmidt, E. and Cohen, J. (2013). The New Digital Age: Reshaping the Future of People, Nations and Business, Knopf Publishing Group. Sinnappan, S., Farrell, C. and Stewart, E. (2010). 'Priceless tweets! A study on twitter messages posted during crisis: Black Saturday.' Proceedings of the ACIS 2010 Australasian Conference on Information Systems. Shamma, D. A., Kennedy, L., and Churchill, E. F. (2009). 'Tweet the debates: understanding community annotation of uncollected sources.' Proceedings of the first SIGMM workshop on Social media, Beijing, China, 3-10. Smith, B. G. (2010). 'Socially distributing public relations: Twitter, Haiti, and interactivity in social media.' Public Relations Review, 36(4), 329-335. Surowiecki, J. (2005). The Wisdom of Crowds: Why the Many Are Smarter than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations., Doubleday New York. Vieweg, S., Hughes, A. L., Starbird, K. and Palen, L. (2010). 'Microblogging during two natural hazards events: what twitter may contribute to situational awareness.' Proceedings of the SIGCHI conference on human factors in computing systems, ACM, Atlanta, Georgia, USA. Vukovic, M., Laredo, J. and Rajagopal, S. (2010). 'Challenges and experiences in deploying enterprise crowdsourcing service.' Web Engineering, B. Benatallah, F. Casati, G. Kappel, and G. Rossi, eds., Springer Berlin Heidelberg, 460-467. Wachowicz, M. and Hunter, G. (2005). 'Dealing with uncertainty in the real-time knowledge discovery process.' Geo-information for Disaster Management, P. van Oosterom, S. Zlatanova, and E. Fendel, eds., Springer Berlin Heidelberg, 789-797. Zheng, L., Shen, C., Tang, L., Li, T., Luis, S. and Chen, S. C. (2011). 'Applying data mining techniques to address disaster information management challenges on mobile devices.' Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 283-291. Zheng, L., Shen, C., Tang, L., Zeng, C., Li, T., Luis, S. and Chen, S. C. (2013). 'Data mining meets the needs of disaster information management.' IEEE Transactions on Human-Machine Systems, 43(5), 451-464. Zhu, J., Xiong, F., Piao, D., Liu, Y. and Zhang, Y. (2011). 'Statistically modeling the effectiveness of disaster information in social media.' Proceedings of the 2011 IEEE Global Humanitarian Technology Conference, IEEE Computer Society. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55662 | - |
| dc.description.abstract | 災情回報的效率和正確性會直接影響救災的品質,大部份的災情回報是由政府處理,相關人員從各種來源收集資訊、確認它的正確性,再發佈正確的訊息。這樣的流程確保了資訊的品質,卻時常造成時間上的延遲。近年由於網路及行動裝置的發展,許多群眾平台如Sahana、 Ushahidi 平台、莫拉克颱風災情地圖開始應用在災情回報上。然而,雖然這些平台在防災上扮演著日益重要的角色, 它有三項明顯的不利因素:正確性、重複回報、格式不一致且沒有重要資訊的欄位。本研究發展一套結合電腦計算和群眾智慧的方法 (ACI filter) 來降低這些不利因素。ACI filter包含人工智慧演算法和群眾智慧。我們使用人工智慧演算法找出很有可能為正確回報的資料,並且篩除很有可能為錯誤回報的資料。剩下的回報則交由群眾智慧處理。群眾有三項工作:合併重複的災情回報資訊、篩選錯誤的回報、將資訊的格式一致化。我們使用2012 06010豪雨事件的災情回報資料進行可行性評估,當中包含876筆資訊。研究成果顯示ACI filter篩除26.25%的回報,偽陰性率為0.00%,偽陽性率為3.91%,同時ACI filter將11.3%的災情回報格式化。總結來說,我們開發了ACI filter,提高群眾平台在在災情回報上的可用性。 | zh_TW |
| dc.description.abstract | The quality of disaster mitigation is directly connected to the efficiency and quality of disaster responses. In current state of practice, most disaster responses require manual process, mainly handled by government officers, to eliminate the incorrectness. They usually collect the information from multiple sources, verify the correctness and announce the verified information. This process ensures the quality of the information but often result in time-delay. Recently, due to the rapid development of Internet and mobile devices, many crowd-based platforms, such as Sahana, Ushahidi crisis map and Typhoon Morakot Crisis Map, have been developed and employed for disaster responses. Although these platforms sometimes play important role in disaster mitigation, they have three obvious drawbacks: correctness, duplication, and inconsistent format. In this research, we aim to develop a computational method, ACI filter, to eliminate the drawbacks. ACI filter integrates both artificial intelligence (AI) filter and the human intelligence using crowd sources. We used AI filter to retrieve the responses that are highly possible to be correct and eliminate the responses that are highly possible to be incorrect. Remaining responses are filtered by crowd sources. We used the crowd for three purposes: to combine the duplicated responses, to eliminate incorrect responses, and to synchronize the formats of the responses. To verify the ACI filter, we used 876 disaster responses collected from a real disaster in Taiwan caused by a serious torrential rain in June 10 2012. We recruited 284 volunteers from the Internet to participate the test. Each participant is asked to answer twenty short questions. Average testing time for each participant is 212 seconds, meaning 10.6 seconds per question. The research results show that ACI filter eliminates 26.25% inaccurate responses. False negative rate (i.e. mistakenly validation) is 0.00%. False positive rate (i.e. mistakenly elimination) is 3.91%. In conclusion, ACI filter, combining the machine and human power, can successfully improve the accuracy of the responses with the crowd. The method can be extended and applied to cope with large-scale disaster responses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:15:44Z (GMT). No. of bitstreams: 1 ntu-103-R01521611-1.pdf: 1943782 bytes, checksum: 5f057a6e1b984f8a3cbeec469f1f964c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
Abstract ii 摘要 iv Table of Content v List of Figures vii List of Tables viii 1. Introduction 1 2. Related Research 4 2.1. Crowdsourcing 4 2.2. Social Media 4 2.3. Emergent Operation Platforms 6 2.4. Common Drawbacks in Existing Platforms 7 3. Research Goal 9 4. Method 10 4.1. Workflow of ACI Filter 10 4.2. Artificial Intelligence Filter 11 4.3. Crowd Intelligence Filter 12 4.4. Crowd Voting Mechanism 15 5. Implementation 17 5.1. AI Filter 17 5.2. CI Filter 18 6. Validation 23 6.1. Data Set 23 6.2. AI Filter 23 6.3. ACI Filter 24 6.4. Discussion 26 7. Conclusion 28 Reference 29 | |
| dc.language.iso | en | |
| dc.subject | 群眾平台 | zh_TW |
| dc.subject | 災情回報 | zh_TW |
| dc.subject | 篩選器 | zh_TW |
| dc.subject | 眾包 | zh_TW |
| dc.subject | crowdsourcing | en |
| dc.subject | filter | en |
| dc.subject | crowd-based platform | en |
| dc.subject | disaster responses | en |
| dc.title | 眾包災情回報篩選器 | zh_TW |
| dc.title | An effective filter for screening disaster
responses from the crowd | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳書儀,鄧怡莘,林李耀,賴進松 | |
| dc.subject.keyword | 災情回報,眾包,篩選器,群眾平台, | zh_TW |
| dc.subject.keyword | disaster responses,crowdsourcing,filter,crowd-based platform, | en |
| dc.relation.page | 32 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
