Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊佳玲(Chia-Lin Yang)
dc.contributor.authorGeng-You Chenen
dc.contributor.author陳庚佑zh_TW
dc.date.accessioned2021-06-16T04:15:17Z-
dc.date.available2016-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citation[1] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: using flash memory to build fast, power-efficient clusters for data-intensive applications. In Mary Lou Soffa and Mary Jane Irwin, editors, ASPLOS, pages 217–228. ACM, 2009.
[2] Jian Ouyang, Shiding Lin, Jiang Song, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. Sdf: software-defined flash for web-scale internet storage systems. In Rajeev Balasubramonian, Al Davis, and Sarita V. Adve, editors, ASPLOS, pages 471–484. ACM, 2014.
[3] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand S. Aiyer, Liyin Tang, An drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Analysis of hdfs under hbase: a facebook messages case study. In Bianca Schroeder and Eno Thereska, editors, FAST, pages 199–212. USENIX, 2014.
[4] EMC Corporation. XtremIO (TM).
[5] Yuhui Deng and Jipeng Zhou. Architectures and optimization methods of flash memory based storage systems. Journal of Systems Architecture - Embedded Systems Design, 57(2):214–227, 2011.
[6] Ping Huang, Ke Zhou, Hua Wang, and Chun hua Li. Bvssd: build built-in versioning flash-based solid state drives. In SYSTOR, page 8. ACM, 2012.
[7] Swaroop Kavalanekar, Bruce L. Worthington, Qi Zhang, and Vishal Sharda. Characterization of storage workload traces from production windows servers. In David Christie, Alan Lee, Onur Mutlu, and Benjamin G. Zorn, editors, IISWC, pages 119–128. IEEE, 2008.
[8] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and Antony I. T. Rowstron. Everest: Scaling down peak loads through i/o off-loading. In Richard Draves and Robbert van Renesse, editors, OSDI, pages 15–28. USENIX Association, 2008.
[9] Beth Trushkowsky, Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jor dan, and David A. Patterson. The scads director: Scaling a distributed storage system under stringent performance requirements. In Gregory R. Ganger and John Wilkes, editors, FAST, pages 163–176. USENIX, 2011.
[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value store. In Thomas C. Bressoud and M. Frans Kaashoek, editors, SOSP, pages 205–220. ACM, 2007.
[11] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Ion Stoica, and Randy H. Katz. Sweet storage slos with frosting. In Rodrigo Fonseca and David A. Maltz, editors, HotCloud. USENIX Association, 2012.
[12] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy H. Katz, and Ion Stoica. Cake: enabling high-level slos on shared storage systems. In Michael J. Carey and Steven Hand, editors, SoCC, page 14. ACM, 2012.
[13] Luiz Andre Barroso. Warehouse-scale computing: Entering the teenage decade. In Proceedings of the 38th Annual International Symposium on Computer Architecture, ISCA ’11, New York, NY, USA, 2011. ACM.
[14] Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim. Flexfs: A flexible flash file system for mlc nand flash memory. In Geoffrey M. Voelker and Alec Wolman, editors, USENIX Annual Technical Conference. USENIX Association, 2009.
[15] Xavier Jimenez, David Novo, and Paolo Ienne. Software controlled cell bit-density to improve nand flash lifetime. In Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, DAC, pages 229–234. ACM, 2012.
[16] Sungjin Lee and Jihong Kim. Improving performance and capacity of flash storage devices by exploiting heterogeneity of mlc flash memory. IEEE Transactions on Computers, 99(PrePrints):1, 2013.
[17] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack K. Wolf. Characterizing flash memory: anomalies, observations, and applications. In David H. Albonesi, Margaret Martonosi, David I. August, and Jose F. Martinez, editors, MICRO, pages 24–33. ACM, 2009.
[18] Laura M. Grupp, John D. Davis, and Steven Swanson. The harey tortoise: Managing heterogeneous write performance in ssds. In Andrew Birrell and Emin Gun Sirer, editors, USENIX Annual Technical Conference, pages 79–90. USENIX Association, 2013.
[19] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288, 2008.
[20] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, and Alistair C. Veitch. Hippodrome: Running circles around storage administration. In Darrell D. E. Long, editor, FAST, pages 175–188. USENIX, 2002.
[21] John D. Strunk, Eno Thereska, Christos Faloutsos, and Gregory R. Ganger. Using utility to provision storage systems. In Mary Baker and Erik Riedel, editors, FAST, pages 313–328. USENIX, 2008.
[22] Eric Anderson, Susan Spence, Ram Swaminathan, Mahesh Kallahalla, and Qian Wang. Quickly finding near-optimal storage designs. ACM Trans. Comput. Syst., 23(4):337–374, 2005.
[23] John Wilkes. Traveling to rome: Qos specifications for automated storage system management. In Lars C. Wolf, David Hutchison, and Ralf Steinmetz, editors, IWQoS, volume 2092 of Lecture Notes in Computer Science, pages 75–91. Springer, 2001.
[24] Markus Klems, Adam Silberstein, Jianjun Chen, Masood Mortazavi, Sahaya An drews Albert, P. P. S. Narayan, Adwait Tumbde, and Brian F. Cooper. The yahoo!: cloud datastore load balancer. In Xiaofeng Meng, Adam Silberstein, and Fusheng Wang, editors, CloudDb, pages 33–40. ACM, 2012.
[25] Li-Pin Chang. Hybrid solid-state disks: Combining heterogeneous nand flash in large ssds. In ASP-DAC, pages 428–433. IEEE, 2008.
[26] Soojun Im and Dongkun Shin. Comboftl: Improving performance and lifespan of mlc flash memory using slc flash buffer. Journal of Systems Architecture - Embedded Systems Design, 56(12):641–653, 2010.
[27] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A five year study of file-system metadata. In Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau, editors, FAST, pages 31–45. USENIX, 2007.
[28] Michael L. Dertouzos. Control robotics: The procedural control of physical pro cesses. In IFIP Congress, pages 807–813, 1974.
[29] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark S. Man asse, and Rina Panigrahy. Design tradeoffs for ssd performance. In Rebecca Isaacs and Yuanyuan Zhou, editors, USENIX Annual Technical Conference, pages 57–70. USENIX Association, 2008.
[30] Iotta repository, storage networking industry association. http://iotta.snia.org/.
[31] Timothy Pritchett and Mithuna Thottethodi. Sievestore: a highly-selective, ensemble-level disk cache for cost-performance. In Andre Seznec, Uri C. Weiser, and Ronny Ronen, editors, ISCA, pages 163–174. ACM, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55655-
dc.description.abstract隨著快閃記憶體的單位儲存成本持續下跌,企業開始廣泛選用基於多位準快閃記憶體的固態硬碟作為其儲存系統。然而,由於快閃記憶體先天在讀取與寫入速度上的不對稱,寫入速度經常成為儲存系統的效能瓶頸。又因為伺服器環境有許多 I/O 工作是瞬間爆量的,在尖峰負載時必須處理的寫入請求數目有可能比平時還要高出一個數量級甚至更多,這使得企業必須極大程度地超額配置其儲存系統,以確保在尖峰負載下的寫入延遲時間依能滿足企業內部對於儲存系統的服務層級目標,例如 99 百分位數的 I/O 延遲時間必須少於 100 毫秒。
多位準快閃記憶體的寫入異質性(多位準/單位準模式寫入)有很大的機會能改善尖峰寫入延遲時間,使企業可以用較少的超額配置成本讓儲存系統達成原本服務層級目標的延遲時間要求。然而,為了盡可能減輕因為單位準模式寫入而造成的壽命減損,我們在本論文當中提出了一個服務層級目標感知的固態硬碟架構,能夠只使用極少的單位準模式寫入就達成服務層級目標。我們提出的固態硬碟架構包含了一個嶄新的演算法,它能夠同時排程每個寫入請求的執行順序以及寫入模式。我們的排程演算法能夠迅速找到一個局部最佳排程,使得在不考慮未來可能出現的讀寫請求的前提下,對於目前已出現的每一個寫入請求都能滿足我們所指定的延遲時間目標(例如 100 毫秒),而所使用的單位準模式寫入數目卻是最少的。除非任何排程都沒辦法滿足我們所指定的延遲時間目標,否則我們的演算法一定可以找到一個局部最佳排程。另一方面,為了要避免固態硬碟由於未來出現的讀寫爆量而違反服務層級目標,我們提出的固態硬碟架構會在原本服務層級目標所指定的延遲時間目標(例如 100 毫秒)內,適應性地加入一些安全邊界(例如 15 毫秒),使得實際作用於排程演算法的是一個較短的延遲時間目標(例如 85 毫秒),這會讓許多寫入請求提早被做完,空出時間讓固態硬碟得以容忍更多未來出現的讀寫請求。
就我們所知,本論文是第一篇探討以多位準快閃記憶體的寫入異質性來達成服務層級目標的研究。實驗結果顯示,基於我們提出的服務層級目標感知的固態硬碟架構,儲存系統可能在完全不需要超額配置更多儲存節點的情形下就滿足服務層級目標。我們改善了 99 百分位數的 I/O 延遲時間高達 16 倍,但從固態硬碟的總擦除次數來看,我們只造成 2.9% 的壽命減損。
zh_TW
dc.description.abstractThe ever-growing capacity and continuously-dropping price have enabled the MLC SSDs to be widely adopted in the enterprises' storage subsystems. However, due to the NAND Flash's asymmetric read/write latency, the write performance is often the I/O bottleneck of the MLC SSD-based storage subsystems. Moreover, since many server I/O workloads are bursty, the storage subsystems may experience peak write request rates that are over an order of magnitude higher than average load. This requires significant overprovisioning for peaks in order to make the peak write latency meet the enterprises' internal SLOs (Service-Level Objectives) for their storage subsystems, such as the 99th percentile I/O latency < 100ms.
The write heterogeneity (i.e. the MLC/SLC-mode write) in MLC SSDs provides great potential for the storage subsystems to improve the peak write latency, reducing the cost of massive overprovisioning for meeting the SLO's latency requirement. To minimize the lifetime impact of the SLC-mode writes, in this thesis, we propose a SLO-aware SSD Architecture which meets the SLO with minimal SLC-mode writes used. This architecture includes a novel algorithm to schedule both the issuing sequence and the SLC/MLC mode of each write request. Our scheduling algorithm can quickly find a local optimal schedule such that if there's no read and write requests in the future, all the write requests which have arrived in the SSD can meet the given targeted latency (e.g. 100ms) with minimal SLC-mode writes used. Unless there's no schedule which can meet the given targeted latency, our scheduling algorithm can always find this local optimum. To prevent the SSD from violating the SLO due to the read or write bursts in the future, this architecture adaptively adds a safety margin (e.g. 15ms) to the SLO's targeted latency value (e.g. 100ms), resulting in a smaller targeted latency value (e.g. 85ms) actually used for the scheduling algorithm. This makes the requests finish earlier, enabling the SSD to tolerate more read or write bursts in the future.
To our knowledge, this is the first work targeted for the SLO by exploiting the write heterogeneity of the MLC NAND Flash. The experimental results show that with the help of our SLO-aware SSD Architecture, it's possible to meet the SLO without the need of overprovisioning more storage nodes. The 99th percentile I/O latency is significantly improved by up to 16x with only 2.9% lifetime impact in terms of the total erase count.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:15:17Z (GMT). No. of bitstreams: 1
ntu-103-R01922070-1.pdf: 1611167 bytes, checksum: 8afa5171461bdddea3a32595ada6c0f7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定 ... 1
誌謝 ... 2
中文摘要 ... 3
Abstract ... 5
Contents ... 7
List of Figures ... 9
List of Tables ... 10
1 Introduction ... 1
2 Background ... 4
2.1 SLOs for Storage Subsystems ... 4
2.2 Write Heterogeneity of MLC NAND Flash ... 5
3 Related Works ... 8
3.1 Achieving SLOs for Storage Subsystems ... 8
3.2 Exploiting Write Heterogeneity of MLC NAND Flash ... 9
4 SLO-aware SSD Architecture ... 11
4.1 Latency-targeted Heterogeneous Write Scheduling ... 12
4.2 SLO-aware Targeted Latency Adapting ... 14
5 Implementation ... 16
5.1 Latency-targeted Heterogeneous Write Scheduling ... 16
5.2 SLO-aware Targeted Latency Adapting ... 18
6 Evaluation ... 23
6.1 Experimental Environment ... 23
6.2 Workload Characteristics ... 24
6.3 Experimental Results ... 28
7 Conclusion ... 33
Bibliography ... 34
dc.language.isoen
dc.subject服務層級目標zh_TW
dc.subject尖峰負載zh_TW
dc.subject多位準快閃記憶體zh_TW
dc.subject寫入異質性zh_TW
dc.subject單位準模式zh_TW
dc.subjectSLC Modeen
dc.subjectPeak Loaden
dc.subjectMLC NAND Flashen
dc.subjectWrite Heterogeneityen
dc.subjectSLOen
dc.title利用多位準快閃記憶體之寫入異質性改善尖峰 I/O 效能zh_TW
dc.titleImproving Peak I/O Performance by Exploiting Write Heterogeneity of MLC NAND Flashen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝仁偉(Jen-Wei Hsieh),張原豪(Yuan-Hao Chang)
dc.subject.keyword服務層級目標,尖峰負載,多位準快閃記憶體,寫入異質性,單位準模式,zh_TW
dc.subject.keywordSLO,Peak Load,MLC NAND Flash,Write Heterogeneity,SLC Mode,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved