Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55632
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林發暄
dc.contributor.authorLu-yi Lien
dc.contributor.author李輅毅zh_TW
dc.date.accessioned2021-06-16T04:13:51Z-
dc.date.available2014-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citation[1] Ances, B. M. (2004). 'Coupling of changes in cerebral blood flow with neural activity: what must initially dip must come back up.' J Cereb Blood Flow Metab 24(1): 1-6.
[2] Ances, B. M., et al. (1998). 'Transcranial laser doppler mapping of activation flow coupling of the rat somatosensory cortex.' Neurosci Lett 257(1): 25-28.
[3] Ogawa, S., Lee, T. M., Nayak, A. & Glynn, P. (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.. Magn. Reson. Med. 14,68-78.
[4] Fox, P. T., Raichle, M. E. (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83, 1140-1144.
[5] Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. (1988) Nonoxidaive glucose consumption during focal physiological nerural activity. Science 241, 462-464.
[6] Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990)
[7] Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34: 4–10.
[8] Kim SG, Ugurbil K (1997) Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magn Reson Med 38: 59–65.
[9] Fox, M. D. and M. E. Raichle (2007). 'Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.' Nat Rev Neurosci 8(9): 700-711.
[10] Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., Quigley, M.A., Meyerand, M.E., 2000. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 21 (9), 1636–1644.
[11] Aertsen, A.M., Gerstein, G.L., Habib, M.K., Palm, G., 1989. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 61 (5), 900–917.
[12] Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 (4), 537–541.
[13] Biswal, B. B., VanKylen, J., & Hyde, J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. Nmr in Biomedicine, 10(4-5), 165-170.
[14] Broyd, Samantha J.; Demanuele, Charmaine; Debener, Stefan; Helps, Suzannah K.; James, Christopher J.; Sonuga-Barke, Edmund J.S. (2009). 'Default-mode brain dysfunction in mental disorders: A systematic review'. Neuroscience & Biobehavioral Reviews 33 (3): 279–96.
[15] Birn, R.M., Diamond, J.B., Smith, M.A., Bandettini, P.A., 2006. Separating respiratory-variation-related fluctuations from neu- ronal-activity-related fluctuations in fMRI. Neuroimage 31 (4), 1536–1548.
[16] Birn, R.M., Smith, M.A., Jones, T.B., Bandettini, P.A., 2008. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 40 (2), 644–654.
[17] Shmueli, K., van Gelderen, P., de Zwart, J.A., Horovitz, S.G., Fukunaga, M., Jansma, J.M., Duyn, J.H., 2007. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 38 (2), 306–320.
[18] Lin, F. H., et al. (2006). 'Dynamic magnetic resonance inverse imaging of human brain function.' Magn Reson Med 56(4): 787-802.
[19] Lin, F. H., et al. (2008). 'Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing.' Neuroimage 42(1):
[20] Lin, F. H., et al. (2008). 'Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging.' Neuroimage 43(2): 297-311.
[21] Zahneisen, B., et al. (2011). 'Three-dimensional MR-encephalography: fast volumetric brain imaging using rosette trajectories.' Magn Reson Med 65(5): 1260-1268.
[22] Feinberg, D. A., et al. (2010). 'Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging.' PLoS One 5(12): e15710.
[23] Baria, A. T., et al. (2011). 'Anatomical and functional assemblies of brain BOLD oscillations.' J Neurosci 31(21): 7910-7919.
[24] Boubela, R. N., et al. (2013). 'Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest.' Front Hum Neurosci 7: 168.
[25] Lee, H. L., et al. (2013). 'Tracking dynamic resting-state networks at higher frequencies using MR-encephalography.' Neuroimage 65: 216-222.
[26] Mingoia, G., et al. (2013). 'Frequency domains of resting state default mode network activity in schizophrenia.' Psychiatry Res 214(1): 80-82.
[27] Nir, Y., et al. (2006). 'Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation.' Neuroimage 30(4): 1313-1324.
[28] Cordes, D., et al. (2000). 'Mapping functionally related regions of brain with functional connectivity MR imaging.' AJNR Am J Neuroradiol 21(9): 1636-1644.
[29] Lowe, M. J., et al. (1998). 'Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations.' Neuroimage 7(2): 119-132.
[30] Kleiner M, Brainard D, Pelli D, 2007, 'What's new in Psychtoolbox-3?' Perception 36 ECVP Abstract Supplement.
[31] Brainard, D. H. (1997) The Psychophysics Toolbox, Spatial Vision 10:433-436.
[32] Pelli, D. G. (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies, Spatial Vision 10:437-442.
[33] Sarkka, S., et al. (2012). 'Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER.' Neuroimage 60(2): 1517-1527.
[34] Rogers, B. P., et al. (2007). 'Assessing functional connectivity in the human brain by fMRI.' Magn Reson Imaging 25(10): 1347-1357.
[35] Bedrosian, E. (December 1962), 'A Product Theorem for Hilbert Transforms', Rand Corporation Memorandum (RM-3439-PR)
[36] Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., et al. (2001). Frequencies con- tributing to functional connectivity in the cerebral cortex in “resting- state” data. AJNR Am. J. Neuroradiol. 22, 1326–1333.
[37] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961–1005, 1990.
[38] M. Unser and A. Aldroubi, “A review of wavelets in biomedical applications,” Proceedings of the IEEE, vol. 84, pp. 626–638, 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55632-
dc.description.abstract傳統功能性核磁共振影像在研究人腦靜態的訊號時,多專注在低頻率(低於0.1Hz)的人腦訊號振動。在我們的實驗中,我們為了提高時間上的解析度,犧牲了影像的涵蓋範圍,利用單張快速迴訊平面造影(TR 為0.1秒)的技術,以專注於研究人腦左右視覺區域之間的功能性連接。快速掃描技術提供給我們很高的取樣頻率,有助於我們在分析訊號時排除生理雜訊的干擾,同時又能讓我們研究更高頻率上的振動。在實驗中,我們使用了時域上的相關性分析和訊號包絡的相關性分析來衡量在不同頻率下人腦左右視覺區的功能性連接。我們的結果證明,一如傳統靜態人腦功能性核磁共振影像實驗的結果,人腦的左右視覺區靜態的訊號,在0.08Hz以下是高度相關的。同時,在0.1Hz到0.2Hz的頻率帶內,這兩個視覺區的訊號也高度相關。zh_TW
dc.description.abstractConventional resting-state fMRI often looks for spontaneous BOLD signals at frequencies below 0.1Hz. In this study, we used high-speed single-slice EPI with TR = 100 ms to investigate the functional connectivity between hemispheric visual cortex. We sacrificed the coverage of the brain without compromising the spatial resolution in order to achieve a high sampling rate (10 Hz). With the high sampling rate, we were able to prevent the physiological noise from aliasing with the BOLD signals of interest and investigate the spontaneous BOLD signal at frequencies above 0.1Hz. We used time series correlation and oscillatory envelope correlation to assess the functional connectivity. Our results show that left visual cortex and right visual cortex are highly correlated at the frequency band lower than 0.08Hz and at the frequency band between 0.1Hz and 0.2Hz.en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:13:51Z (GMT). No. of bitstreams: 1
ntu-103-R00548056-1.pdf: 4623014 bytes, checksum: 557c41c2c3fb466fa1599da3f2346d1f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
Chapter 1 Introduction 1
Chapter 2 Method 5
2.1 Participants 5
2.2 Data acquisition 6
2.3 Pre-processing 7
2.3.1 Filtering of physiological noises 7
2.4 Selection of the region-of-interest 8
2.5 Functional connectivity analysis by correlation 9
2.5.1 Frequency selection by band-pass filtering 9
2.5.2 Functional connectivity assessed by time series correlation 10
2.5.3 Functional connectivity assessed by oscillatory envelope correlation 10
Chapter 3 Results 13
3.1 Functional connectivity assessed by time series correlation 13
3.2 Functional connectivity assessed by oscillatory envelope correlation 17
3.3 Time series correlation between left and right visual cortex 20
3.4 Oscillatory envelope correlations between left and right visual cortex 21
Chapter 4 Discussion 23
REFERENCE 26
dc.language.isozh-TW
dc.title利用快速功能性核磁共振影像研究靜態人腦視覺區功能性連接zh_TW
dc.titleThe resting-state functional connectivity at human visual cortex revealed by fast functional magnetic resonance imagingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃騰毅,王福年,郭文瑞,吳文超
dc.subject.keyword核磁共振,功能性核磁共振影像,靜態功能性核磁共振影像,視覺,功能性連接,相關,zh_TW
dc.subject.keywordMRI,fMRI,resting-state MRI,visual,functional connectivity,correlation,en
dc.relation.page30
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved