請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55617完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘國隆(Kuo-Long Pan) | |
| dc.contributor.author | Ting-Yu Lin | en |
| dc.contributor.author | 林廷諭 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:12:56Z | - |
| dc.date.available | 2019-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | 參考文獻
[1] Mishima, K., & Hibiki, T. (1996). Some characteristics of air-water two-phase flow in small diameter vertical tubes. International Journal of Multiphase Flow,22(4), 703-712. [2] Xu, J. L., Cheng, P., & Zhao, T. S. (1999). Gas–liquid two-phase flow regimes in rectangular channels with mini/micro gaps. International Journal of Multiphase Flow, 25(3), 411-432. [3] Serizawa, A., Feng, Z., & Kawara, Z. (2002). Two-phase flow in microchannels.Experimental Thermal and Fluid Science, 26(6), 703-714. [4] Cubaud, T., & Ho, C. M. (2004). Transport of bubbles in square microchannels.Physics of fluids, 16, 4575. [5] Sur, A., & Liu, D. (2012). Adiabatic air–water two-phase flow in circular microchannels. International Journal of Thermal Sciences, 53, 18-34. [6] Garstecki, P., Fuerstman, M. J., Stone, H. A., & Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 6(3), 437-446. [7] De Menech, M., Garstecki, P., Jousse, F., & Stone, H. A. (2008). Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 595(1), 141-161. [8] Tan, Y. C., Ho, Y. L., & Lee, A. P. (2007). Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluid Nanofluid, 3(4), 495-499 [9] Castro-Hernandez, E.,Elena., van Hoeve, W., Lohse, D., & Gordollo, J. M. (2011). Microbubble generation in a co-flow device operated in a new regime. Lab on a chip . 11(12), 2023-2029. [10] 馮啟棠, (2013), “添加界面活性劑對U形微流道內排水效率與氣泡傳動之研究,”國立台灣大學機械工程研究所碩士論文 [11] Presto, W. C., & Preston, W. (1948). Some correlating principles of detergent action. The Journal of Physical Chemistry, 52(1), 84-97. [12] Cubaud, T., Ulmanella, U., & Ho, C. M. (2006). Two-phase flow in microchannels with surface modifications. Fluid dynamics research, 38(11), 772-786. [13] Tostado, C. P., Xu, J., & Luo, G. (2011). The effects of hydrophilic surfactant concentration and flow ratio on dynamic wetting in a T-junction microfluidic device. Chemical Engineering Journal, 171(3), 1340-1347. [14] 吳政蒲, (2013) , “氣液二相流體於突擴十字聚焦型微流道利用界面活性劑增進傳輸穩定性之研究,”國立台灣大學機械工程研究所碩士論文 [15] Shimpalee, S., Greenway, S., & Van Zee, J. W. (2006). The impact of channel path length on PEMFC flow-field design. Journal of Power Sources, 160(1), 398-406. [16] Sadiq Al-Baghdadi, M. A. (2009). Performance comparison between airflow-channel and ambient air-breathing PEM fuel cells using three-dimensional computational fluid dynamics models. Renewable Energy, 34(7), 1812-1824. [17] Kumar, A., & Reddy, R. G. (2003). Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. Journal of Power Sources, 113(1), 11-18. [18] Wong, C. W., Zhao, T. S., Ye, Q., & Liu, J. G. (2005). Transient capillary blocking in the flow field of a micro-DMFC and its effect on cell performance.Journal of The Electrochemical Society, 152(8), A1600-A1605. [19] Yang, H., Zhao, T. S., & Ye, Q. (2005). In situ visualization study of CO< sub> 2</sub> gas bubble behavior in DMFC anode flow fields. Journal of Power Sources, 139(1), 79-90. [20] Garstecki, P., Fuerstman, M. J., Stone, H. A., & Whitesides, G. M. (2006). Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab on a Chip, 6(3), 437-446. [21] Stone, H. A., & Leal, L. G. (1990). The effects of surfactants on drop deformation and breakup. J. Fluid Mech, 220, 161-186. [22] Pawar, Y., & Stebe, K. J. (1996). Marangoni effects on drop deformation in an extensional flow: The role of surfactant physical chemistry. I. Insoluble surfactants. Physics of Fluids, 8, 1738. [23] 陳淮駐(2012), “氣液二相流體於突縮T型微流道使用不同界面活性劑增進傳輸之研究,”國立台灣大學機械工程研究所碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55617 | - |
| dc.description.abstract | 為了解決燃料電池蜿蜒流道積水的問題,本實驗設計四層蜿蜒流道,並加上細分支,研究各種流體在流道中的穩定性、濕潤性以及排出率進行分析。並設計入口處,分析十字聚焦結構,與T形結構的不同,發現十字聚焦結構,能有效地產生週期穩定,大小相同的氣泡;也分析了濕潤性與非濕潤性對於排水的影響,發現濕潤性能夠有效排水,並且把空氣留住,不會從分支流出,可以達到排水集氣的效果。並用capillary number(Ca)來判斷流道的濕潤性,實驗也發現一般的自然界純物質,例如:純水、純甘油、純酒精都能完全的結合,但對於只要添加界面活性劑氣泡就完全無法結合,所以添加界面活性劑就有排水效率的極限。最後用Ca和排出量作圖,Ca越大排出量會越多。
最後,由實驗結果顯示,設計四層分支流道,可以排出90%以上的流體,並且把氣體留在流道中,可以解決氫氧燃料電池積水的問題,並在流道中添加界面活性劑可以降低表面張力,提升流道的濕潤性,以利於低流速也可達到濕潤的效果,藉由此流道排水,可以提升燃料電池的效率。 | zh_TW |
| dc.description.abstract | In order to solve the problem that water remains in multi-serpentine channel, the present study performs a multi-serpentine channel with drainage branches, and various fluids were applied to investigate effects that different fluid properties bring. With applications of T-junction and flow focusing geometry, bubbles were produced to analyze the stability, wettability and size of bubbles. We used Ca-We diagram to categorize bubble generation regimes. The diagram shows that the transition of boundary between wetting and non-wetting bubbles occurs at about Ca=0.006. In the results of the research, the drainage rate was increased as the Ca increased.
Finally, the experimental results show the channel could drain more than 90% of fluid. Furthermore, the gas could be maintained in the flow channel, thus the problems of hydrogen fuel cells could be solved. Adding surfactant in the fluids could reduce the surface tension, and would enhance the wettability. Thus wetting could be achieved in low flow rates condition, and the efficiency of fuel cell would be improved. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:12:56Z (GMT). No. of bitstreams: 1 ntu-103-R01522113-1.pdf: 3842154 bytes, checksum: 519b281c890a787d8f5583eef95b4414 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
中文摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 ix 符號說明 x 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 流態 2 1.2.2 T形結構 5 1.2.3 十字聚焦結構 (flow-focusing geometry) 7 1.2.4 加分支的蜿蜒流道 9 1.2.5 界面活性劑與微流道 11 1.2.6 添加界面活性劑對氣泡的影響 13 1.2.7 燃料電池 15 1.3 研究目的及動機 17 第2章 實驗設備與配置 18 2.1 注射系統 19 2.1.1 注射幫浦 19 2.1.2 注射針筒 21 2.1.3 針頭 21 2.1.4 鐵氟龍管 22 2.2 照明裝置 22 2.3 拍攝系統 23 2.3.1 高速攝影機 23 2.3.2 顯微鏡 24 2.4 測量儀器 26 2.5 黃光設備與材料 26 2.5.1 Su-8光阻與顯影劑 26 2.5.2 旋轉塗佈機 27 2.5.3 曝光機 27 2.5.4 加熱板 27 2.5.5 氧電漿接合機 28 第3章 實驗方法 30 3.1 流道介紹 30 3.2 微流道製作 31 3.2.1 光罩 31 3.2.2 黃光微影製程 32 3.2.3 軟微影製程 34 3.2.4 氧電漿接合 35 3.3 實驗方法 35 3.3.1 實驗拍攝 35 3.3.2 實驗流程 35 3.3.3 影像處理及量測 36 3.3.4 量測性質定義 37 3.4 實驗流體 40 3.4.1 40 第4章 結果與討論 42 4.1 穩定性分析 42 4.1.1 T形結構 產生氣泡 42 4.1.2 十字聚焦結構產生氣泡 44 4.2 濕潤與非濕潤分析 47 4.3 氣泡無法結合,影響排水 52 4.4排水量與Ca 關係 55 4.3.1 黏度不同 55 4.3.2 表面張力不同 56 4.3.3 界面活性分子效應 59 4.4 排水傳輸效率分析 61 4.5 加入界面活性劑 對排水效果的影響以及應用性 62 第5章 結論 63 5.1 要點總結 63 5.2 此流道的特點 64 5.3 未來展望 65 參考文獻 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣泡 | zh_TW |
| dc.subject | 微流體 | zh_TW |
| dc.subject | 界面活性劑 | zh_TW |
| dc.subject | 兩相流 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | bubble | en |
| dc.subject | Micro-fluidics | en |
| dc.subject | surfactant | en |
| dc.subject | flow | en |
| dc.subject | micro-channel | en |
| dc.title | 多層U形微流道內排水效率與氣泡傳輸與添加界面活性劑之研究 | zh_TW |
| dc.title | Drainage Efficiency and Bubble Transport and Surfactant Effect in a multi-U-shape Micro channel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐振哲(Cheng-Che(Jerry),沈弘俊(Horn-Jiunn Sheen) | |
| dc.subject.keyword | 微流體,界面活性劑,兩相流,微流道,氣泡, | zh_TW |
| dc.subject.keyword | Micro-fluidics,surfactant,flow,micro-channel,bubble, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
