Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55616
標題: 彈性波內部傳輸特徵值問題的計算
Numerical Computation of the Interior Transmission Eigenvalue Problems for Elastic Waves
作者: Wei-Chen Chang
張偉楨
指導教授: 王振男(Jenn-Nan Wang)
關鍵字: 內部傳輸特徵值問題,Jacobi-Davidson 方法,廣義特徵值問題,二次特徵值問題,內嵌障礙物,
Interior transmission eigenvalue problem,Jacobi-Davidson method,Generalized eigenvalue problem,Quadratic eigenvalue problem,An embedded obstacle,
出版年 : 2020
學位: 博士
摘要: 這項工作旨在研究在非均勻介質中彈性波散射的內部傳輸特徵值問題。根據散射域中是否嵌入障礙物,我們可以建立兩種偏微分方程,再使用有限元方法分別導出各別的廣義特徵值問題。在具有內嵌障礙物的問題中,根據內嵌障礙物的邊界條件,我們可以考慮更多因素。我們旨在計算大量且最接近目標的傳輸特徵值。在每種特徵值問題中皆考慮兩種參數變化,即跳躍彈性和跳躍密度。基於Jacobi-Davidson 方法,我們提供了一些可以有效估計所需特徵值的算法。特別是,對於跳躍密度,我們必須在算法開始時另外刪除非物理零特徵值,其數量取決於離散化後點的個數。針對沒有內嵌障礙物的情況,為了解決這個難題,我們特別將廣義特徵值問題轉換為二次特徵值問題。相對地,對於內嵌障礙物的問題,我們將零特徵值轉換到無窮大。本論文將介紹算法並給出其數值結果。
This work aims to study the interior transmission eigenvalue problem (ITEP) for elastic waves scattering in inhomogeneous media. Depending on whether there is an obstacle embedded in the scattering domain, we can establish two partial differential equations and separately derive the generalized eigenvalue problem (GEP) using the finite element method (FEM). In a problem with an embedded obstacle, we can consider more factors because of the boundary condition of the obstacle. We aim to compute a large number of transmission eigenvalues that are closest to the target. Two parameters, i.e., jumping elasticity and jumping density, are considered in each eigenvalue problem. Based on the Jacobi-Davidson (JD) method, we provide some algorithms that can efficiently estimate the desired eigenvalues. In particular, for jumping density, we must additionally remove the nonphysical zero eigenvalues whose number depends on the size of the discretization at the beginning of the algorithms. To deal with this difficulty, we transform the GEP into a quadratic eigenvalue problem (QEP) for a problem without an embedded obstacle. Moreover, for a problem with an embedded obstacle, we deflate the zero eigenvalues to infinity. In this dissertation, we introduce the algorithms and present their numerical results.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55616
DOI: 10.6342/NTU202002041
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-2907202016020900.pdf
  目前未授權公開取用
7.89 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved