Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55611
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorTsung-Liang Chuangen
dc.contributor.author莊琮亮zh_TW
dc.date.accessioned2021-06-16T04:12:33Z-
dc.date.available2017-09-05
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citationReference
[1] A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. bioelectron., vol. 26, no. 5, pp. 1815–1824, Jan. 2011.
[2] S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface Plasmon Resonance Spectroscopy Based on Evanescent Field Treatment,” Anal. Chem., vol. 76, no. 3, pp. 561–568, Dec. 2003.
[3] Jiři Homola, Surface Plasmon Resonance Based Sensors, 2006th ed., vol. 4. Springer Berlin Heidelberg.
[4] E. Yeatman and E. . Ash, “Surface plasmon microscopy,” Electron Lett, vol. 23, no. 20, pp. 1091–1092, Sep. 1987.
[5] E. Kretschmann and H. Raether, Z. Naturforsch., vol. 230, pp. 2135,1968.
[6] D.C. Cullen, R.G. Brown, C.R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors, vol. 88, no. 3, pp. 211.1987.
[7] O. S.Wolfbeis, Springer Series on Chemical Sensors and Biosensors, ISSN 1612-7617
[8] B. F. Brehm-Stecher and E. A. Johnson, “Single-Cell Microbiology: Tools, Technologies, and Applications,” Microbiology and Molecular Biology Reviews, vol. 68, no. 3, pp. 538–559, Sep. 2004.
[9] B. Rothenhausler and W. Knoll, “Surface plasmon microscopy,” Nature, vol. 332, no. 6165, pp. 615–617, Apr. 1988.
[10] J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink, G. J. M. Pruijn, and R. B. M. Schasfoort, “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosens. bioelectron., vol. 23, no. 6, pp. 839–844, Jan. 2008.
[11] S. Rebe Raz, M. G. E. G. Bremer, M. Giesbers, and W. Norde, “Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance,” Biosens. bioelectron., vol. 24, no. 4, pp. 552–557, Dec. 2008.
[12] S. Otsuki, K. Tamada, and S. Wakida, “Wavelength-scanning surface plasmon resonance imaging,” Appl. Opt., vol. 44, no. 17, pp. 3468–3472, Jun. 2005.
[13] R. Thariani and P. Yager, “Imaging of Surfaces by Concurrent Surface Plasmon Resonance and Surface Plasmon Resonance-Enhanced Fluorescence,” PLoS ONE, vol. 5, no. 3, p. e9833, Mar. 2010.
[14] T. Wilkop, Z. Wang, and Q. Cheng, “Analysis of μ-Contact Printed Protein Patterns by SPR Imaging with a LED Light Source,” Langmuir, vol. 20, no. 25, pp. 11141–11148, Nov. 2004.
[15] L. K. Wolf, D. E. Fullenkamp, and R. M. Georgiadis, “Quantitative Angle-Resolved SPR Imaging of DNA−DNA and DNA−Drug Kinetics,” J. Am. Chem. Soc., vol. 127, no. 49, pp. 17453–17459, Nov. 2005.
[16] “WHO | Hepatitis B.” [Online]. Available: http://www.who.int/mediacentre/factsheets/fs204/en/. [Accessed: 30-Jul-2014].
[17] U. H. Iloeje, H. Yang, J. Su, C. Jen, S. You, and C. Chen, “Predicting Cirrhosis Risk Based on the Level of Circulating Hepatitis B Viral Load,” Gastroenterology, vol. 130, no. 3, pp. 678–686, Mar. 2006.
[18] C. Z. Lee, G. T. Huang, P. M. Yang, J. C. Sheu, M. Y. Lai, and D. S. Chen, “Correlation of HBV DNA levels in serum and liver of chronic hepatitis B patients with cirrhosis,” Liver, vol. 22, no. 2, pp. 130–135, 2002.
[19] J. J. Carrino and H. H. Lee, “Nucleic acid amplification methods,” J Microbiol Methods, vol. 23, no. 1, pp. 3–20, Jul. 1995.
[20] R. C. Cadwell and G. F. Joyce, “Randomization of genes by PCR mutagenesis.,” Genome Res, vol. 2, no. 1, pp. 28–33, 1992.
[21] C. Cooney, D. Sipes, N. Thakore, R. Holmberg, and P. Belgrader, “A plastic, disposable microfluidic flow cell for coupled on-chip PCR and microarray detection of infectious agents,” Biomed Microdevices, vol. 14, no. 1, pp. 45–53, Feb. 2012.
[22] C. Zhang, H. Wang, and D. Xing, “Multichannel oscillatory-flow multiplex PCR microfluidics for high-throughput and fast detection of foodborne bacterial pathogens,” Biomed Microdevices, vol. 13, no. 5, pp. 885–897, Oct. 2011.
[23] C. Zhang, J. Xu, W. Ma, and W. Zheng, “PCR microfluidic devices for DNA amplification,” Biotechnology Advances, vol. 24, no. 3, pp. 243–284, May 2006.
[24] G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, and D. P. Malinowski, “Strand displacement amplification—an isothermal, in vitro DNA amplification technique,” Nucleic acids res., vol. 20, no. 7, pp. 1691–1696, 1992.
[25] M. L. Collins, B. Irvine, D. Tyner, E. Fine, C. Zayati, C. Chang, T. Horn, D. Ahle, J. Detmer, L.-P. Shen, J. Kolberg, S. Bushnell, M. S. Urdea, and D. D. Ho, “A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml,” Nucleic Acids Research, vol. 25, no. 15, pp. 2979–2984, Aug. 1997.
[26] R. W. Kwiatkowski, V. Lyamichev, M. de Arruda, and B. Neri, “Clinical, genetic, and pharmacogenetic applications of the invader assay,” MOL DIAGN, vol. 4, no. 4, pp. 353–364, Dec. 1999.
[27] j. Compton, “Nucleic acid sequence-based amplification,” Nature, vol. 350, pp. 91–92, 1991.
[28] P. M. Lizardi, X. Huang, Z. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward, “Mutation detection and single-molecule counting using isothermal rolling-circle amplification,” Nat Genet, vol. 19, no. 3, pp. 225–232, Jul. 1998.
[29] K. E. Vrana, “Advancing technologies in gene amplification,” Trends biotechnol., vol. 14, no. 11, pp. 413–415, Nov. 1996.
[30] S. S. Iqbal, M. W. Mayo, J. G. Bruno, B. V. Bronk, C. A. Batt, and J. P. Chambers, “A review of molecular recognition technologies for detection of biological threat agents,” Phytopathology, vol. 15, no. 11–12, pp. 549–578, Dec. 2000.
[31] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Res., vol. 28, no. 12, p. e63, 2000.
[32] S. J. Harper, L. I. Ward, and G. R. G. Clover, “Development of LAMP and Real-Time PCR Methods for the Rapid Detection of Xylella fastidiosa for Quarantine and Field Applications,” Phytopathology, vol. 100, no. 12, pp. 1282–1288, Aug. 2010.
[33] Y. Mori, K. Nagamine, N. Tomita, and T. Notomi, “Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation,” Biochem. Biophys. Res. Commun., vol. 289, no. 1, pp. 150–154, Nov. 2001.
[34] L. L. M. Poon, B. W. Y. Wong, E. H. T. Ma, K. H. Chan, L. M. C. Chow, W. Abeyewickreme, N. Tangpukdee, K. Y. Yuen, Y. Guan, S. Looareesuwan, and J. S. M. Peiris, “Sensitive and Inexpensive Molecular Test for Falciparum Malaria: Detecting Plasmodium falciparum DNA Directly from Heat-Treated Blood by Loop-Mediated Isothermal Amplification,” Clin. Chem., vol. 52, no. 2, pp. 303–306, 2006.
[35] T. Iwamoto, T. Sonobe, and K. Hayashi, “Loop-Mediated Isothermal Amplification for Direct Detection of Mycobacterium tuberculosis Complex, M. avium, and M. intracellulare in Sputum Samples,” J CLIN MICROBIOL, vol. 41, no. 6, pp. 2616–2622, 2003.
[36] H. T. C. Thai, M. Q. Le, C. D. Vuong, M. Parida, H. Minekawa, T. Notomi, F. Hasebe, and K. Morita, “Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus,” J. Clin. Microbiol., vol. 42, no. 5, pp. 1956–1961, 2004.
[37] M. Ito, M. Watanabe, N. Nakagawa, T. Ihara, and Y. Okuno, “Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: Comparison with immunochromatography and virus isolation,” J Virol Methods, vol. 135, no. 2, pp. 272–275, Aug. 2006.
[38] M. Imai, A. Ninomiya, H. Minekawa, T. Notomi, T. Ishizaki, M. Tashiro, and T. Odagiri, “Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection,” Vaccine, vol. 24, no. 44–46, pp. 6679–6682, Nov. 2006.
[39] S. Iwata, Y. Shibata, J. Kawada, S. Hara, Y. Nishiyama, T. Morishima, M. Ihira, T. Yoshikawa, Y. Asano, and H. Kimura, “Rapid detection of Epstein–Barr virus DNA by loop-mediated isothermal amplification method,” J CLIN VIROL, vol. 37, no. 2, pp. 128–133, Oct. 2006.
[40] H. Kaneko, T. Iida, K. Aoki, S. Ohno, and T. Suzutani, “Sensitive and Rapid Detection of Herpes Simplex Virus and Varicella-Zoster Virus DNA by Loop-Mediated Isothermal Amplification,” J CLIN MICROBIOL, vol. 43, no. 7, pp. 3290–3296, 2005.
[41] N. Tomita, Y. Mori, H. Kanda, and T. Notomi, “Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products,” Nat. Protocols, vol. 3, no. 5, pp. 877–882, Apr. 2008.
[42] S.-Y. Lee, J.-G. Huang, T.-L. Chuang, J.-C. Sheu, Y.-K. Chuang, M. Holl, D. R. Meldrum, C.-N. Lee, and C.-W. Lin, “Compact optical diagnostic device for isothermal nucleic acids amplification,” Sens. Actuators, B, vol. 133, no. 2, pp. 493–501, Aug. 2008.
[43] G. Bergstrom and C.-F. Mandenius, “Orientation and capturing of antibody affinity ligands: Applications to surface plasmon resonance biochips,” Sensors and Actuators B: Chemical, vol. 158, no. 1, pp. 265–270, Nov. 2011.
[44] S. A. Kim, S. Das, H. Lee, J. Kim, Y. M. Song, I. S. Kim, K. M. Byun, S. J. Hwang, and S. J. Kim, “Preliminary approach of real-time monitoring in vitro matrix mineralization based on surface plasmon resonance detection,” BIOTECHNOL BIOENG, vol. 108, no. 6, pp. 1473–1478, 2011.
[45] C.-Y. Lin, Y.-Y. Fang, C.-W. Lin, J. J. Tunney, and K.-C. Ho, “Fabrication of NOx gas sensors using In2O3–ZnO composite films,” Sens. Actuators, B, vol. 146, no. 1, pp. 28–34, Apr. 2010.
[46] C.-C. Chang, N.-F. Chiu, D. S. Lin, Y. Chu-Su, Y.-H. Liang, and C.-W. Lin, “High-Sensitivity Detection of Carbohydrate Antigen 15-3 Using a Gold/Zinc Oxide Thin Film Surface Plasmon Resonance-Based Biosensor,” Anal. Chem., vol. 82, no. 4, pp. 1207–1212, Jan. 2010.
[47] H. Tang, Q. Wang, Q. Xie, Y. Zhang, L. Tan, and S. Yao, “Enzymatically biocatalytic precipitates amplified antibody–antigen interaction for super low level immunoassay: An investigation combined surface plasmon resonance with electrochemistry,” Biosens. Bioelectron., vol. 23, no. 5, pp. 668–674, Dec. 2007.
[48] L. A. Terry, S. F. White, and L. J. Tigwell, “The Application of Biosensors to Fresh Produce and the Wider Food Industry,” J. Agric. Food Chem., vol. 53, no. 5, pp. 1309–1316, Feb. 2005.
[49] B. Van Dorst, J. Mehta, K. Bekaert, E. Rouah-Martin, W. De Coen, P. Dubruel, R. Blust, and J. Robbens, “Recent advances in recognition elements of food and environmental biosensors: A review,” J. Colloid Interface Sci., vol. 26, no. 4, pp. 1178–1194, Dec. 2010.
[50] S. Rodriguez-Mozaz, M. Lopez de Alda, and D. Barcelo, “Biosensors as useful tools for environmental analysis and monitoring,” Anal Bioanal Chem, vol. 386, no. 4, pp. 1025–1041, Oct. 2006.
[51] M. N. Velasco-Garcia and T. Mottram, “Biosensor Technology addressing Agricultural Problems,” Biosyst. eng., vol. 84, no. 1, pp. 1–12, Jan. 2003.
[52] H. J. van den Top, C. T. Elliott, S. A. Haughey, N. Vilariño, H. P. van Egmond, L. M. Botana, and K. Campbell, “Surface Plasmon Resonance Biosensor Screening Method for Paralytic Shellfish Poisoning Toxins: A Pilot Interlaboratory Study,” Anal. Chem., vol. 83, no. 11, pp. 4206–4213, Apr. 2011.
[53] J.-Y. Lee, H.-C. Shih, C.-T. Hong, and T. K. Chou, “Measurement of refractive index change by surface plasmon resonance and phase quadrature interferometry,” OPT COMMUN, vol. 276, no. 2, pp. 283–287, Aug. 2007.
[54] F.-C. Chien and S.-J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron., vol. 20, no. 3, pp. 633–642, Oct. 2004.
[55] B. N. Feltis, B. A. Sexton, F. L. Glenn, M. J. Best, M. Wilkins, and T. J. Davis, “A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents,” Biosens. Bioelectron., vol. 23, no. 7, pp. 1131–1136, Feb. 2008.
[56] T. M. Chinowsky, M. S. Grow, K. S. Johnston, K. Nelson, T. Edwards, E. Fu, and P. Yager, “Compact, high performance surface plasmon resonance imaging system,” Biosens. Bioelectron., vol. 22, no. 9–10, pp. 2208–2215, Apr. 2007.
[57] S. Sugiyama, M. Yokoyama, H. Ishizuka, K.-I. Sotowa, T. Tomida, and N. Shigemoto, “Removal of aqueous ammonium with magnesium phosphates obtained from the ammonium-elimination of magnesium ammonium phosphate,” J. Colloid Interface Sci., vol. 292, no. 1, pp. 133–138, Dec. 2005.
[58] A. Z. Tasic, B. D. Djordjevic, D. K. Grozdanic, and N. Radojkovic, “Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures,” J. Chem. Eng. Data, vol. 37, no. 3, pp. 310–313, Jul. 1992.
[59] V. Serini, “Polycarbonates,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
[60] J. T. Brown, “Center wavelength shift dependence on substrate coefficient of thermal expansion for optical thin-film interference filters deposited by ion-beam sputtering,” Appl. Opt., vol. 43, no. 23, pp. 4506–4511, Aug. 2004.
[61] L. P. Ormerod, “Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and treatment,” Br. med. bull., vol. 73–74, no. 1, pp. 17–24, 2005.
[62] World Health Organization (WHO) Global tuberculosis report 2013, Global tuberculosis report 2013. Geneva: WHO, 2013.
[63] D. Menzies, R. Joshi, and M. Pai, “Risk of tuberculosis infection and disease associated with work in health care settings [State of the Art Series. Occupational lung disease in high- and low-income countries, Edited by M. Chan-Yeung. Number 5 in the series],” INT J TUBERC LUNG DIS, vol. 11, no. 6, pp. 593–605, Jun. 2007.
[64] J. Cayla and A. Orcau, “Control of tuberculosis in large cities in developed countries: an organizational problem,” BMC Med, vol. 9, no. 1, p. 127, 2011.
[65] P. C. Hopewell, M. Pai, D. Maher, M. Uplekar, and M. C. Raviglione, “International Standards for Tuberculosis Care,” The Lancet Infectious Diseases, vol. 6, no. 11, pp. 710–725, Nov. 2006.
[66] M. Pai, L. W. Riley, and J. M. Colford Jr, “Interferon-γ assays in the immunodiagnosis of tuberculosis: a systematic review,” The Lancet Infectious Diseases, vol. 4, no. 12, pp. 761–776, Dec. 2004.
[67] R. Diel, D. Goletti, G. Ferrara, G. Bothamley, D. Cirillo, B. Kampmann, C. Lange, M. Losi, R. Markova, G. B. Migliori, A. Nienhaus, M. Ruhwald, D. Wagner, J. P. Zellweger, E. Huitric, A. Sandgren, and D. Manissero, “Interferon-γ release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis,” Eur Respir J, vol. 37, no. 1, pp. 88–99, 2011.
[68] T. Tan, W. L. Lee, D. C. Alexander, S. Grinstein, and J. Liu, “The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation,” Cell Microbiol., vol. 8, no. 9, pp. 1417–1429, 2006.
[69] M. E. Munk, S. M. Arend, I. Brock, T. H. M. Ottenhoff, and P. Andersen, “Use of ESAT-6 and CFP-10 Antigens for Diagnosis of Extrapulmonary Tuberculosis,” J Infect Dis, vol. 183, no. 1, pp. 175–176, 2001.
[70] J. Y. Lee, H. J. Choi, I.-N. Park, S.-B. Hong, Y.-M. Oh, C.-M. Lim, S. D. Lee, Y. Koh, W. S. Kim, D. S. Kim, W. D. Kim, and T. S. Shim, “Comparison of two commercial interferon-γ assays for diagnosing Mycobacterium tuberculosis infection,” Eur Respir J, vol. 28, no. 1, pp. 24–30, 2006.
[71] M. Cyndee Miranda, P. Belinda Yen‐Lieberman, D. Paul Terpeluk, M. J. Walton Tomford, and M. Steven Gordon, “Reducing the Rates of Indeterminate Results of the QuantiFERON‐TB Gold In‐Tube Test During Routine Preemployment Screening for Latent Tuberculosis Infection Among Healthcare Personnel •,” Infection Control and Hospital Epidemiology, vol. 30, no. 3, pp. 296–298, Mar. 2009.
[72] A. Sett, S. Das, P. Sharma, and U. Bora, “Aptasensors in Health, Environment and Food Safety Monitoring.,” OJAB, vol. 1, no. 2, pp. 9–19, 2012.
[73] R. Schirhagl, U. Latif, D. Podlipna, H. Blumenstock, and F. L. Dickert, “Natural and Biomimetic Materials for the Detection of Insulin,” Anal. Chem., vol. 84, no. 9, pp. 3908–3913, Apr. 2012.
[74] C.-C. Chang, S. Lin, Y. Chu-Su, and C.-W. Lin, “Using polyethylene glycol-modified chitosan for improvement of carbohydrate antigen 15-3 detection on a quartz crystal microbalance biosensor,” Sens Lett, vol. 9, no. 1, pp. 404–408, 2011.
[75] S. J. Lee, B.-S. Youn, J. W. Park, J. H. Niazi, Y. S. Kim, and M. B. Gu, “ssDNA Aptamer-Based Surface Plasmon Resonance Biosensor for the Detection of Retinol Binding Protein 4 for the Early Diagnosis of Type 2 Diabetes,” Anal. Chem., vol. 80, no. 8, pp. 2867–2873, Mar. 2008.
[76] G. Gauglitz, “Direct optical detection in bioanalysis: an update,” Anal Bioanal Chem, vol. 398, no. 6, pp. 2363–2372, Nov. 2010.
[77] R. B. M. Schasfoort and A. McWhirter, “Chapter 3 SPR Instrumentation,” in Handbook of Surface Plasmon Resonance, The Royal Society of Chemistry, 2008, pp. 35–80.
[78] C.-C. Chang, S. Lin, C.-H. Lee, T.-L. Chuang, P.-R. Hsueh, H.-C. Lai, and C.-W. Lin, “Amplified surface plasmon resonance immunosensor for interferon-Gamma based on a streptavidin-incorporated aptamer,” Biosens. Bioelectron, vol. 37, no. 1, pp. 68–74, Aug. 2012.
[79] Y. Bourquin, J. Reboud, R. Wilson, Y. Zhang, and J. M. Cooper, “Integrated immunoassay using tuneable surface acoustic waves and lensfree detection,” Lab Chip, vol. 11, no. 16, pp. 2725–2730, 2011.
[80] G. Posthuma-Trumpie, J. Korf, and A. Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal Bioanal Chem, vol. 393, no. 2, pp. 569–582, Jan. 2009.
[81] J.-G. Huang, C.-L. Lee, H.-M. Lin, T.-L. Chuang, W.-S. Wang, R.-H. Juang, C.-H. Wang, C. K. Lee, S.-M. Lin, and C.-W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens Bioelectron, vol. 22, no. 4, pp. 519–525, Oct. 2006.
[82] S. Haeberle and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab Chip, vol. 7, no. 9, pp. 1094–1110, 2007.
[83] A. Bekmurzayeva, M. Sypabekova, and D. Kanayeva, “Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis,” Tuberculosis, vol. 93, no. 4, pp. 381–388, Jul. 2013.
[84] B. R. Lutz, P. Trinh, C. Ball, E. Fu, and P. Yager, “Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper,” Lab Chip, vol. 11, no. 24, pp. 4274–4278, 2011.
[85] E. Fu, P. Kauffman, B. Lutz, and P. Yager, “Chemical signal amplification in two-dimensional paper networks,” Sens. Actuator B-Chem., vol. 149, no. 1, pp. 325–328, Aug. 2010.
[86] E. Fu, B. Lutz, P. Kauffman, and P. Yager, “Controlled reagent transport in disposable 2D paper networks,” Lab Chip, vol. 10, no. 7, pp. 918–920, 2010.
[87] E. Fu, S. Ramsey, P. Kauffman, B. Lutz, and P. Yager, “Transport in two-dimensional paper networks,” Microfluid Nanofluidics, vol. 10, no. 1, pp. 29–35, Jan. 2011.
[88] E. Fu, T. Liang, J. Houghtaling, S. Ramachandran, S. A. Ramsey, B. Lutz, and P. Yager, “Enhanced Sensitivity of Lateral Flow Tests Using a Two-Dimensional Paper Network Format,” Anal. Chem., vol. 83, no. 20, pp. 7941–7946, Sep. 2011.
[89] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc Natl Acad Sci U S A, vol. 105, no. 50, pp. 19606–19611, 2008.
[90] T. M. Herne and M. J. Tarlov, “Characterization of DNA Probes Immobilized on Gold Surfaces,” J. Am. Chem. Soc., vol. 119, no. 38, pp. 8916–8920, Sep. 1997.
[91] R. Verheijen, “3.13 Composition of the detector reagent on the conjugate pad,” in Analytical Biotechnology, Thomas G.M. Schalkhammer, Ed. Birkhauser Basel, 2002, p. 156.
[92] R. W. Baker, “Membrane Transport Theory,” in Membrane Technology and Applications, John Wiley & Sons, Ltd, 2004, pp. 15–87.
[93] B. Lutz, T. Liang, E. Fu, S. Ramachandran, P. Kauffman, and P. Yager, “Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics,” Lab Chip, vol. 13, no. 14, pp. 2840–2847, 2013.
[94] G. E. Fridley, H. Q. Le, E. Fu, and P. Yager, “Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration,” Lab Chip, vol. 12, no. 21, pp. 4321–4327, 2012.
[95] N. Tuleuova and A. Revzin, “Micropatterning of Aptamer Beacons to Create Cytokine-Sensing Surfaces,” Cel. Mol. Bioeng., vol. 3, no. 4, pp. 337–344, Dec. 2010.
[96] N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem., vol. 82, no. 5, pp. 1851–1857, Feb. 2010.
[97] Y. Liu, N. Tuleouva, E. Ramanculov, and A. Revzin, “Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection,” Anal. Chem., vol. 82, no. 19, pp. 8131–8136, Sep. 2010.
[98] Y. Xiang and Y. Lu, “Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets,” Nat Chem, vol. 3, no. 9, pp. 697–703, Sep. 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55611-
dc.description.abstract目前影像式表面電將共振(SPR)生物檢測系統已經有許多實驗室型的機種商品化,並已成為生物分子檢測上廣泛使用的工具。然而因其操作的複雜性,系統的體積,操作環境需求與價格等因素,在面臨未來預防性醫學的使用需求,包含重點照護測試(POCT),田野動植物檢測,食品與環境監測等,SPR生物檢測系統仍須持續改善才能達到應用目的。在物理上,SPR感測器只能靈敏地反應出共振平面附近的折射率變化而非造成變化的因素; 因此為了讓檢測數據具有生物學上的分析意義,會據檢體種類(基因、蛋白質體或細胞),輔以適當生化反應,例如核酸聚合反應與免疫結合反應等,以達成有效辨識出待測物的目的。因此對於SPR生物感測系統的設計而言有以下重點;包括傳感器,光學機構,流體操作與其它輔助系統(機械結構、溫控與資料紀錄與分析)皆很重要, 然而考慮現場檢測的推廣,本研究將著重在流體操作系統的簡化、傳感器多步驟生物操作流程的整合與可拋棄式的設計。據此前提因應基因與蛋白質體的可拋棄式晶片的研發,配合不同典型的生化反應為偵測機制,建構LAMPSPR與薄膜式的微流體晶片,此外基因與蛋白質體層級的檢測為細胞生理表現的重要指標,因此須以此研究為基礎,亦能推廣其應用範疇。
為了證明基因快速檢測的可行性,提出以聚合物材質的SPR感測器,針對恆溫核酸放大反應與蛋白質體-適體結合反應,提出因應的設計,作為不同型生化反應偵測機制的結構基礎。首先,為確保晶片功能的可行性,因此利用目前常使用的Kretschmann設計架構作為晶片量測平台, 用以量測聚合物材質的SPR感測器之光學訊號。接著,為了檢測環化恆溫放大反應(loop-mediated isothermal amplification LAMP),發展了SPRLAMP 系統,包括了整合了聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)微反應槽與聚碳酸酯(polycarbonate, PC) 微小稜鏡的SPRLAMP感測晶片。為實現環化恆溫放大反應來檢測B型肝炎病毒(hepatitis B virus, HBV)的片段基因。首先,我們驗證試劑溶液的體折射率在反應前後的變化量約0.0011。PC 稜鏡的線性度與熱反應與玻璃稜鏡比較結果,顯示PC 稜鏡可用來作為SPR的量測。最後發現到,HBV模板濃度,即使在低濃度2fg/ml的情況下,亦可在17分鐘檢測到。我們亦做各種DNA模板起始濃度與反應時間的相關係數分析,以建立最佳的反應終點時間25分鐘(R2=0.98)。由此可知,利用SPRLAMP感測晶片與 系統可以用來直接偵測溶液體折射率變化來檢測LAMP反應。
酶聯免疫吸附試驗(ELISA) 與酶聯免疫吸附斑點試驗(ELISPOT)被用來作為丙型干擾素釋放分析用以偵測從T細胞分泌出的的丙型干擾素。然而此一堆步驟的分析操作流程仍只適用在實驗室裡的設備並且由訓練過的人來操作。於此,我們提出薄膜式的微流體晶片整合了表面電漿共振感測器以實現方便操作與具經濟效益的多步驟定量分析。為了處理表面電漿共振的量測,我們提供了薄膜式SPR感測器,其中螺縈薄膜位於吸收片下300微米處。此運作機制以Darcy 定理來表示。另外,從蔗糖處理過的玻璃纖維膜釋出的鍊黴親合素之濃度,亦可限縮在一小範圍(0.81 μM ± 6%)。最後未反應的分子可被預先儲存在晶片儲存槽中的清洗液移除。利用雙功能髮夾形的適體作為感測探針,可以偵測丙型干擾素同時經由鍊黴親合素放大其訊號。在0.01nM至100 nM的範圍內,具有高相關係數(R2=0.98)。在30分鐘的反應時間內,可獲得10 pM的檢測極限。因此以表面電漿共振偵測丙型干擾素的分析程序,可在無外加幫浦系統下用此簡單的裝置實現
zh_TW
dc.description.abstractAt present, many surface potential resonance (SPR) detection systems based on laboratory models has been commercialized and have become a power tools widely used in the detection of biological molecules. However, because of the complexity of operating procedure, system size, and limitation of operating environment, SPR biological detection system shall continue to improve to achieve the application purpose, including the demands of preventive medicine in the future, including point of care testing (POCT), flora and animal testing in field, food and environmental monitoring. Physically, SPR sensor can only response sensitively to the refractive index change near the plane of the resonance but the reason of refractive index change; Therefore, in order to make sense of the biological test result, people will chose appropriate biochemical reactions, such as nucleic acid polymerization reaction and immuno reaction according to the type of the specimen (genes, proteins, or cell), to recognized the analytes. Therefore, for the design of SPR biosensing systems, all of the following priorities; including sensors, optical construction, fluid operation system and other auxiliary systems (mechanical structure, temperature and analysis of the data records) are important. Considering the expression of on-site application in near future, the study will focus on the simplification of fluid operating systems, the design of multi-step and disposable sensor to promote the performance and practicability of SPR biosensing system. Therefore, the LAMPSPR chip and membrane based processing chip was provided based on different reaction mechanism to develop the disposable chip for genetic and proteomic detection. In addition, the detection of gene and protein expression is critical for determination of cell behavior and thus the relative technique could be used as the fundamental to extend the application scope to cell level detection.
In this work, a simple, low-cost surface plasmon resonance (SPR)-sensing cartridge based on a loop-mediated isothermal amplification (LAMP) method was provide for the on-site detection of the hepatitis B virus (HBV). To detect LAMP reaction, a SPR based LAMP sensing system (SPRLAMP) was constructed, including a novel SPRLAMP sensing cartridge integrating a polymethyl methacrylate (PMMA) micro-reactor with a polycarbonate (PC)-based prism coated with a 50 nm Au film. First, we found that the change of refractive index of the bulk solution was approximately 0.0011 refractive index (RI) units after LAMP reaction. The PC-based prism’s linearity and thermal responses were compared to those of a traditional glass prism to show that a PC-based prism can be used for SPR measurement. Finally, the HBV template mixed in the 10 μl LAMP solution could be detected by SPRLAMP system in 17 minutes even at the detection-limited concentration of 2 fg/ml. We also analyzed the correlation coefficients between the initial concentrations of HBV DNA templates and the system response (ΔRU) at varying amplification times to establish an optimal amplification time endpoint of 25 minutes (R2= 0.98). In conclusion, the LAMP reaction could be detected with the SPRLAMP sensing cartridge based on direct sensing of the bulk refractive index.
ELISA and ELISPOT methods are utilized for interferon-gamma (IFN-γ) release assays (IGRAs) to detect the IFN-γ secreted by T lymphocytes. However, the multi-step protocols of the assays are still performed with laboratory instruments and operated by well-trained people. Here, we report a membrane-based microfluidic device integrated with a surface plasmon resonance (SPR) sensor to realize an easy-to-use and cost effective multi-step quantitative analysis. To conduct the SPR measurements, we utilized a membrane-based SPR sensing device in which a rayon membrane was located 300 μm under the absorbent pad. The basic equation covering this type of transport is based on Darcy's law. Furthermore, the concentration of streptavidin delivered from a sucrose-treated glass pad placed alongside the rayon membrane was controlled in a narrow range (0.81 μM ± 6%). Finally, the unbound molecules were removed by a washing buffer that was pre-packed in the reservoir of the chip. Using a bi-functional, hairpin-shaped aptamer as the sensing probe, we specifically detected the IFN-γ and amplified the signal by binding the streptavidin. A high correlation coefficient (R2 = 0.995) was obtained, in the range from 0.01 to 100 nM. A detection limit of 10 pM was achieved within 30 min. Thus, the SPR assay protocols for IFN-γ detection could be performed using this simple device without an additional pumping system.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:12:33Z (GMT). No. of bitstreams: 1
ntu-103-D96548001-1.pdf: 2276389 bytes, checksum: 76d842118d22ed593596566fd4fcbc91 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目 錄
國立台灣大學(碩) 博士學位論文口試委員會審定書 i
中文摘要 viii
Abstract x
1 Introduction - 1 -
1.1 Requirements of life sciences - 1 -
1.2 Scheme of SPR system for bio-sensing - 2 -
1.3 Characteristics of Surface plasmon resonance - 3 -
1.4 SPR coupling schemes - 4 -
1.5 Recognition of bio-molecules - 4 -
2 NIR surface instrument design and fabrication - 6 -
2.1 Introduction - 6 -
2.2 Materials and methods - 7 -
2.2.1 Design concept - 7 -
2.2.2 Light source apparatus design and construction - 7 -
2.2.3 Prism and detector - 8 -
2.2.4 Temperature control - 8 -
2.2.5 Evaluation of light source uniformity - 9 -
2.2.6 Noise test - 9 -
2.2.7 Refractometry test - 10 -
2.3 Results and Discussion - 10 -
2.3.1 Light source uniformity and Imaging resolution - 10 -
2.3.2 Instrument performance - 10 -
2.4 Summary - 11 -
3. A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification - 12 -
3.1 Introduction - 12 -
3.2 Materials and methods - 14 -
3.2.1. Preparation of LAMP assay - 14 -
3.2.2 Measurement of refractive index - 15 -
3.2.3 The SPRLAMP sensing cartridge - 16 -
3.2.4 SPRLAMP instrument - 16 -
3.2.5 Polycarbonate (PC) prism test - 18 -
3.3 Results and discussion - 19 -
3.3.1 HBV LAMP assay - 19 -
3.3.1.1 HBV LAMP validation - 19 -
3.3.1.2 Measurement of bulk refractive index of LAMP mixture - 19 -
3.3.2 Isothermal SPRLAMP system - 20 -
3.3.2.1 Isothermal SPRLAMP instrument - 20 -
3.3.2.2 Polycarbonate (PC) prism - 21 -
3.3.2.3 PMMA cartridge - 22 -
3.3.3 HBV LAMP analysis using SPR isothermal system - 23 -
3.4 Summary - 25 -
4. Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection - 26 -
4.1 Introduction - 26 -
4.2 Materials and methods - 29 -
4.2.1 Preparation of hairpin DNA for an IFN-γ aptamer and a streptavidin aptamer - 29 -
4.2.2 Process designs of the membrane-based microfluidic device - 30 -
4.2.3 Aptamer Immobilization of the COC prism modified with DNA - 30 -
4.2.4 Construction of a membrane-based quantitative SPR chip - 31 -
4.2.5 SPR imaging instrument - 32 -
4.2.6 Visualization of the test of the chip processes - 32 -
4.2.7 Estimation of the variation in the streptavidin concentration - 33 -
4.2.8 Interferon-gamma measurement - 33 -
4.3 Results and Discussion - 34 -
4.3.1 Surface plasmon resonance instrument - 34 -
4.3.2 Configuration of the autonomous process sensing cartridge - 35 -
4.3.3. Functional verification of autonomous processing for SPR detection - 36 -
4,3,4 Stability of the streptavidin concentration with different sample addition volumes - 37 -
4.3.5 SPR-based analysis for the multi-step process sensing cartridge - 39 -
4.4 Summary - 41 -
5. Conclusion - 43 -
圖目錄
Fig. 1.1 - 45 -
Fig. 1.2 - 46 -
Fig.1.3 - 47 -
Fig. 2.1 - 48 -
Fig. 2.2 - 49 -
Fig. 2.3 - 50 -
Fig. 2.4 - 51 -
Fig. 2.6 - 53 -
Fig. 3.1 - 54 -
Fig. 3.2 - 55 -
Fig. 3.3 - 56 -
Fig. 3.4 - 57 -
Fig. 3.5 - 58 -
Fig. 4.1 - 59 -
Fig. 4.2 - 60 -
Fig. 4.4 - 62 -
Fig. 4.6 - 64 -


表目錄
Table 1.1 - 65 -
Table 2.1 - 66 -
Table 2.2 - 67 -
Table 3.1 - 68 -
Table 3.2 - 69 -
dc.language.isozh-TW
dc.subject重點照護zh_TW
dc.subjectB肝病毒zh_TW
dc.subjectSPRLAMP檢測匣zh_TW
dc.subject孔隙薄膜微流體裝置zh_TW
dc.subject丙型干擾素zh_TW
dc.subject影像式表面電漿共振儀zh_TW
dc.subjectinterferon-gammaen
dc.subjectSPR image Hepatitis B virusen
dc.subjectpoint of careen
dc.subjectSPRLAMP sensing cartridge membrane-based microfluidic deviceen
dc.title拋棄式表面電漿共振快速篩檢晶片之設計與應用zh_TW
dc.titleDesign and Application of Surface Plasmon Resonance Based Disposable Rapid Screen Chipen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee王安邦(An-Bang Wang),薛博仁(Po-Ren Hsueh),賴信志(Hsin-Chih Lai),李世元(Shih-Yuan Lee)
dc.subject.keyword影像式表面電漿共振儀,B肝病毒,重點照護,SPRLAMP檢測匣,孔隙薄膜微流體裝置,丙型干擾素,zh_TW
dc.subject.keywordSPR image Hepatitis B virus,point of care,SPRLAMP sensing cartridge membrane-based microfluidic device,interferon-gamma,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved