Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55600
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李伯訓(Bor-Shiunn Lee)
dc.contributor.authorYu-Chen Linen
dc.contributor.author林妤珍zh_TW
dc.date.accessioned2021-06-16T04:11:52Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citation1. Colonna, M., M. Breschi, A. Mazzoni, et al., Effects of pH, ionic strength, and applied voltage on migration of dental monomers in an organic matrix. Dental Materials, 2011. 27(11): p. 1180-6.
2. Guo, X., Z. Peng, P. Spencer, et al., Effect of initiator on photopolymerization of acidic, aqueous dental model adhesives. Journal of Biomedical Materials Research, 2009. 90(4): p. 1120-7.
3. Inui, T., E. Sato, and A. Matsumoto, Pressure-sensitive adhesion system using acrylate block copolymers in response to photoirradiation and postbaking as the dual external stimuli for on-demand dismantling. ACS Applied Materials & Interfaces, 2012. 4(4): p. 2124-32.
4. Kim, S., K. Zoschke, M. Klein, et al., Switchable Polymer Based Thin Film Coils as a Power Module for Wireless Neural Interfaces. Sens Actuators A Phys, 2007. 136(1): p. 467-474.
5. Richard, R.E., M. Schwarz, S. Ranade, et al., Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents. Biomacromolecules, 2005. 6(6): p. 3410-8.
6. Fratzl, P., Collagen: Structure and Mechanics.
7. Dahl, T., B. Sabsay, and A. Veis, Type I collagen-phosphophoryn interactions: specificity of the monomer-monomer binding. Journal of Structural Biology, 1998. 123(2): p. 162-8.
8. Perdigao, J., P. Lambrechts, B. Van Meerbeek, et al., Morphological field emission-SEM study of the effect of six phosphoric acid etching agents on human dentin. Dental Materials, 1996. 12(4): p. 262-271.
9. Butler, W.T. and H. Ritchie, The nature and functional significance of dentin extracellular matrix proteins. The International Journal of Developmental Biology, 1995. 39(1): p. 169-79.
10. Orgel, J.P., T.C. Irving, A. Miller, et al., Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A, 2006. 103(24): p. 9001-5.
11. Lin, C.P., W.H. Douglas, and S.L. Erlandsen, Scanning electron microscopy of type I collagen at the dentin-enamel junction of human teeth. Journal of Histochemistry and Cytochemistry, 1993. 41(3): p. 381-388.
12. Breschi, L., P. Gobbi, G. Mazzotti, et al., Field emission in-lens SEM study of enamel and dentin. Journal of Biomedical Materials Research, 1999. 46(3): p. 315-323.
13. Goldberg, M. and M. Takagi, Dentine proteoglycans: Composition, ultrastructure and functions. Histochemical Journal, 1993. 25(11): p. 781-806.
14. Cheng, H., B. Caterson, and M. Yamauchi, Identification and immunolocalization of chondroitin sulfate proteoglycans in tooth cementum. Connective Tissue Research, 1999. 40(1): p. 37-47.
15. Scott, J.E., Proteoglycan-fibrillar collagen interactions. Biochemical Journal, 1988. 252(2): p. 313-323.
16. Vogel, K.G., M. Paulsson, and D. Heinegard, Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochemical Journal, 1984. 223(3): p. 587-597.
17. Hedbom, E. and D. Heinegard, Binding of fibromodulin and decorin to separate sites on fibrillar collagens. Journal of Biological Chemistry, 1993. 268(36): p. 27307-27312.
18. Kobe, B. and J. Deisenhofer, The leucine-rich repeat: A versatile binding motif. Trends in Biochemical Sciences, 1994. 19(10): p. 415-421.
19. Oyarzun, A., H. Rathkamp, and E. Dreyer, Immunohistochemical and ultrastructural evaluation of the effects of phosphoric acid etching on dentin proteoglycans. European Journal of Oral Sciences, 2000. 108(6): p. 546-554.
20. De Munck, J., M. Vargas, J. Iracki, et al., One-day bonding effectiveness of new self-etch adhesives to bur-cut enamel and dentin. Operative Dentistry, 2005. 30(1): p. 39-49.
21. Yoshida, Y., B. Van Meerbeek, Y. Nakayama, et al., Evidence of chemical bonding at biomaterial-hard tissue interfaces. Journal of Dental Research, 2000. 79(2): p. 709-14.
22. Pashley, D.H., F.R. Tay, and S. Imazato, How to increase the durability of resin-dentin bonds. Compendium of Continuing Education in Dentistry 2011. 32(7): p. 60-4, 66.
23. Rueggeberg, F.A., W.F. Caughman, and J.W. Curtis, Jr., Effect of light intensity and exposure duration on cure of resin composite. Operative Dentistry, 1994. 19(1): p. 26-32.
24. Malhotra, N., K. Mala, and S. Acharya, Resin-based composite as a direct esthetic restorative material. Compendium of Continuing Education in Dentistry, 2011. 32(5): p. 14-23; quiz 24, 38.
25. Sanares, A.M., A. Itthagarun, N.M. King, et al., Adverse surface interactions between one-bottle light-cured adhesives and chemical-cured composites. Dental Materials, 2001. 17(6): p. 542-56.
26. Braga, R.R., P.F. Cesar, and C.C. Gonzaga, Mechanical properties of resin cements with different activation modes. Journal of Oral Rehabilitation, 2002. 29(3): p. 257-62.
27. el-Badrawy, W.A. and O.M. el-Mowafy, Chemical versus dual curing of resin inlay cements. Journal of Prosthetic Dentistry, 1995. 73(6): p. 515-24.
28. Koishi, Y., N. Tanoue, M. Atsuta, et al., Influence of visible-light exposure on colour stability of current dual-curable luting composites. Journal of Oral Rehabilitation, 2002. 29(4): p. 387-93.
29. Giachetti, L., D. Scaminaci Russo, F. Bertini, et al., Translucent fiber post cementation using a light-curing adhesive/composite system: SEM analysis and pull-out test. Journal of Dentistry, 2004. 32(8): p. 629-34.
30. Schwartz, R.S. and J.W. Robbins, Post placement and restoration of endodontically treated teeth: a literature review. Journal of Endodontics, 2004. 30(5): p. 289-301.
31. Foxton, R.M., M. Nakajima, J. Tagami, et al., Bonding of photo and dual-cure adhesives to root canal dentin. Operative Dentistry, 2003. 28(5): p. 543-51.
32. Aksornmuang, J., M. Nakajima, R.M. Foxton, et al., Mechanical properties and bond strength of dual-cure resin composites to root canal dentin. Dental Materials, 2007. 23(2): p. 226-34.
33. Duret, B., M. Reynaud, and F. Duret, [New concept of coronoradicular reconstruction: the Composipost (1)]. Le Chirurgien-dentiste de France 1990. 60(540): p. 131-41 contd.
34. Nakabayashi, N., K. Kojima, and E. Masuhara, The promotion of adhesion by the infiltration of monomers into tooth substrates. Journal of Biomedical Materials Research, 1982. 16(3): p. 265-73.
35. Breschi, L., A. Mazzoni, A. Ruggeri, et al., Dental adhesion review: aging and stability of the bonded interface. Dent Mater, 2008. 24(1): p. 90-101.
36. Van Meerbeek, B., A. Dhem, M. Goret-Nicaise, et al., Comparative SEM and TEM examination of the ultrastructure of the resin-dentin interdiffusion zone. Journal of Dental Research, 1993. 72(2): p. 495-501.
37. Sano, H., T. Shono, T. Takatsu, et al., Microporous dentin zone beneath resin-impregnated layer. Operative dentistry, 1994. 19(2): p. 59-64.
38. Eliades, G., G. Vougiouklakis, and G. Palaghias, Heterogeneous distribution of single-bottle adhesive monomers in the resin-dentin interdiffusion zone. Dental Materials, 2001. 17(4): p. 277-283.
39. Yoshida, Y., B. Van Meerbeek, J. Snauwaert, et al., A novel approach to AFM characterization of adhesive tooth-biomaterial interfaces. Journal of Biomedical Materials Research, 1999. 47(1): p. 85-90.
40. Yoshida, Y., K. Nagakane, R. Fukuda, et al., Comparative study on adhesive performance of functional monomers. Journal of Dental Research, 2004. 83(6): p. 454-8.
41. De Munck, J., K. Van Landuyt, M. Peumans, et al., A critical review of the durability of adhesion to tooth tissue: Methods and results. Journal of Dental Research, 2005. 84(2): p. 118-132.
42. Tay, F.R. and D.H. Pashley, Dental adhesives of the future. Journal of Adhesive Dentistry, 2002. 4(2): p. 91-103.
43. Van Meerbeek, B., J. De Munck, Y. Yoshida, et al., Adhesion to enamel and dentin: Current status and future challenges. Operative Dentistry, 2003. 28(3): p. 215-235.
44. Breschi, L., P. Gobbi, M. Lopes, et al., Immunocytochemical analysis of dentin: A double-labeling technique. Journal of Biomedical Materials Research - Part A, 2003. 67(1): p. 11-17.
45. Eliades, G., G. Palaghias, and G. Vougiouklakis, Effect of acidic conditioners on dentin morphology, molecular composition and collagen conformation in situ. Dental Materials, 1997. 13(1): p. 24-33.
46. Pashley, D.H., F.R. Tay, C. Yiu, et al., Collagen degradation by host-derived enzymes during aging. Journal of Dental Research, 2004. 83(3): p. 216-221.
47. Mazzoni, A., D.H. Pashley, Y. Nishitani, et al., Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials, 2006. 27(25): p. 4470-4476.
48. Gale, M.S. and B.W. Darvell, Thermal cycling procedures for laboratory testing of dental restorations. Journal of Dentistry, 1999. 27(2): p. 89-99.
49. Tay, F.R. and D.H. Pashley, Have dentin adhesives become too hydrophilic? Journal (Canadian Dental Association), 2003. 69(11): p. 726-731.
50. De Munck, J., M. Braem, M. Wevers, et al., Micro-rotary fatigue of tooth-biomaterial interfaces. Biomaterials, 2005. 26(10): p. 1145-1153.
51. Hashimoto, M., H. Ohno, H. Sano, et al., In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials, 2003. 24(21): p. 3795-3803.
52. Eick, J.D., A.J. Gwinnett, D.H. Pashley, et al., Current concepts on adhesion to dentin. Critical Reviews in Oral Biology and Medicine, 1997. 8(3): p. 306-335.
53. Cadenaro, M., F. Antoniolli, S. Sauro, et al., Degree of conversion and permeability of dental adhesives. European Journal of Oral Sciences, 2005. 113(6): p. 525-530.
54. Hashimoto, M., H. Ohno, M. Kaga, et al., In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. Journal of Dental Research, 2000. 79(6): p. 1385-91.
55. Santerre, J.P., L. Shajii, and B.W. Leung, Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Critical Reviews in Oral Biology and Medicine, 2001. 12(2): p. 136-151.
56. Tay, F.R., D.H. Pashley, R.R. Kapur, et al., Bonding BisGMA to dentin--a proof of concept for hydrophobic dentin bonding. Journal of Dental Research, 2007. 86(11): p. 1034-9.
57. Tay, F.R., D.H. Pashley, B.I. Suh, et al., Water treeing in simplified dentin adhesives-Deja Vu? Operative Dentistry, 2005. 30(5): p. 561-579.
58. Watanabe, I. and N. Nakabayashi, Bonding durability of photocured phenyl-P in TEGDMA to smear layer-retained bovine dentin. Quintessence international, 1993. 24(5): p. 335-342.
59. Gwinnett, A.J. and S. Yu, Effect of long-term water storage on dentin bonding. American journal of dentistry, 1995. 8(2): p. 109-111.
60. Burrow, M.F., M. Satoh, and J. Tagami, Dentin bond durability after three years using a dentin bonding agent with and without priming. Dental materials : official publication of the Academy of Dental Materials, 1996. 12(5): p. 302-307.
61. Shono, Y., M. Terashita, J. Shimada, et al., Durability of resin-dentin bonds. Journal of Adhesive Dentistry, 1999. 1(3): p. 211-218.
62. Armstrong, S.R., J.C. Keller, and D.B. Boyer, The influence of water storage and C-factor on the dentin-resin composite microtensile bond strength and debond pathway utilizing a filled and unfilled adhesive resin. Dental Materials, 2001. 17(3): p. 268-276.
63. Tay, F.R., M. Hashimoto, D.H. Pashley, et al., Aging affects two modes of nanoleakage expression in bonded dentin. Journal of Dental Research, 2003. 82(7): p. 537-541.
64. Ito, S., M. Hashimoto, B. Wadgaonkar, et al., Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials, 2005. 26(33): p. 6449-6459.
65. Malacarne, J., R.M. Carvalho, M.F. de Goes, et al., Water sorption/solubility of dental adhesive resins. Dental Materials, 2006. 22(10): p. 973-980.
66. Chiari, M., C. Micheletti, M. Nesi, et al., Towards new formulations for polyacrylamide matrices: N- acryloylaminoethoxyethanol, a novel monomer combining high hydrophilicity with extreme hydrolytic stability. Electrophoresis, 1994. 15(2): p. 177-186.
67. Simo-Alfonso, E., C. Gelfi, R. Sebastiano, et al., Novel acrylamido monomers with higher hydrophilicity and improved hydrolytic stability: II. Properties of N-acryloylaminopropanol. Electrophoresis, 1996. 17(4): p. 732-737.
68. Tanaka, J., K. Ishikawa, H. Yatani, et al., Correlation of Dentin Bond Durability with Water Absorption of Bonding Layer. Dental Materials Journal, 1999. 18(1): p. 11-18.
69. Tay, F.R., D.H. Pashley, and M. Yoshiyama, Two modes of nanoleakage expression in single-step adhesives. Journal of Dental Research, 2002. 81(7): p. 472-476.
70. Tay, F.R., D.H. Pashley, B.I. Suh, et al., Single-step adhesives are permeable membranes. Journal of Dentistry, 2002. 30(7-8): p. 371-382.
71. Chersoni, S., P. Suppa, S. Grandini, et al., In vivo and in vitro permeability of one-step self-etch adhesives. Journal of Dental Research, 2004. 83(6): p. 459-464.
72. Chersoni, S., P. Suppa, L. Breschi, et al., Water movement in the hybrid layer after different dentin treatments. Dental Materials, 2004. 20(9): p. 796-803.
73. Tay, F.R., B.I. Suh, D.H. Pashley, et al., Factors contributing to the incompatibility between simplified-step adhesives and self-cured or dual-cured composites. Part II. Single-bottle, total-etch adhesive. Journal of Adhesive Dentistry, 2003. 5(2): p. 91-105.
74. Sideridou, I.D. and D.S. Achilias, Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. Journal of Biomedical Materials Research, 2005. 74(1): p. 617-26.
75. Miletic, V., A. Santini, and I. Trkulja, Quantification of monomer elution and carbon-carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy. Journal of Dentistry, 2009. 37(3): p. 177-84.
76. Hashimoto, M., F.R. Tay, H. Ohno, et al., SEM and TEM Analysis of Water Degradation of Human Dentinal Collagen. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2003. 66(1): p. 287-298.
77. Wang, Y. and P. Spencer, Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. Journal of Biomedical Materials Research, 2002. 59(1): p. 46-55.
78. Nishitani, Y., M. Yoshiyama, A.M. Donnelly, et al., Effects of resin hydrophilicity on dentin bond strength. Journal of Dental Research, 2006. 85(11): p. 1016-1021.
79. Manso, A.P., L. Marquezini, Jr., S.M. Silva, et al., Stability of wet versus dry bonding with different solvent-based adhesives. Dental Materials, 2008. 24(4): p. 476-82.
80. Hashimoto, M., S. Fujita, and K. Endo, Bonding of self-etching adhesives on dehydrated dentin. Journal of Adhesive Dentistry, 2011. 13(1): p. 49-54.
81. Spencer, P., Y. Wang, and J.L. Katz, Identification of collagen encapsulation at the dentin/adhesive interface. Journal of Adhesive Dentistry, 2004. 6(2): p. 91-95.
82. Ito, S., T. Hoshino, M. Iijima, et al., Water sorption/solubility of self-etching dentin bonding agents. Dental Materials, 2010. 26(7): p. 617-26.
83. Yiu, C.K.Y., E.L. Pashley, N. Hiraishi, et al., Solvent and water retention in dental adhesive blends after evaporation. Biomaterials, 2005. 26(34): p. 6863-6872.
84. Tjaderhane, L., H. Larjava, T. Sorsa, et al., The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. Journal of Dental Research, 1998. 77(8): p. 1622-1629.
85. Sulkala, M., M. Larmas, T. Sorsa, et al., The localization of matrix metalloproteinase-20 (MMP-20, enamelysin) in mature human teeth. Journal of Dental Research, 2002. 81(9): p. 603-607.
86. Sulkala, M., T. Tervahartiala, T. Sorsa, et al., Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Archives of Oral Biology, 2007. 52(2): p. 121-127.
87. Van Strijp, A.J.P., D.C. Jansen, J. DeGroot, et al., Host-derived proteinases and degradation of dentine collagen in situ. Caries Research, 2003. 37(1): p. 58-65.
88. Lee, W., S. Aitken, J. Sodek, et al., Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: Role of active enzyme in human periodontitis. Journal of Periodontal Research, 1995. 30(1): p. 23-33.
89. Ferrari, M. and F.R. Tay, Technique sensitivity in bonding to vital, acid-etched dentin. Operative Dentistry, 2003. 28(1): p. 3-8.
90. Tay, F.R., D.H. Pashley, R.J. Loushine, et al., Self-Etching Adhesives Increase Collagenolytic Activity in Radicular Dentin. Journal of Endodontics, 2006. 32(9): p. 862-868.
91. Nishitani, Y., M. Yoshiyama, B. Wadgaonkar, et al., Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives. European Journal of Oral Sciences, 2006. 114(2): p. 160-166.
92. Suppa, P., L. Breschi, A. Ruggeri, et al., Nanoleakage within the hybrid layer: A correlative FEISEM/TEM investigation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005. 73(1): p. 7-14.
93. Visse, R. and H. Nagase, Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research, 2003. 92(8): p. 827-39.
94. Martin-De Las Heras, S., A. Valenzuela, and C.M. Overall, The matrix metalloproteinase gelatinase A in human dentine. Archives of Oral Biology, 2000. 45(9): p. 757-65.
95. Boukpessi, T., S. Menashi, L. Camoin, et al., The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials, 2008. 29(33): p. 4367-73.
96. Mazzoni, A., D.H. Pashley, F.R. Tay, et al., Immunohistochemical identification of MMP-2 and MMP-9 in human dentin: correlative FEI-SEM/TEM analysis. Journal of Biomedical Materials Research, 2009. 88(3): p. 697-703.
97. Sulkala, M., M. Larmas, T. Sorsa, et al., The localization of matrix metalloproteinase-20 (MMP-20, enamelysin) in mature human teeth. Journal of Dental Research, 2002. 81(9): p. 603-7.
98. Tjaderhane, L., H. Palosaari, J. Wahlgren, et al., Human odontoblast culture method: the expression of collagen and matrix metalloproteinases (MMPs). Advances in Dental Research, 2001. 15: p. 55-8.
99. Nishitani, Y., M. Yoshiyama, B. Wadgaonkar, et al., Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives. European Journal of Oral Sciences, 2006. 114(2): p. 160-6.
100. Mazzoni, A., D.H. Pashley, Y. Nishitani, et al., Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials, 2006. 27(25): p. 4470-6.
101. Finer, Y. and J.P. Santerre, Salivary esterase activity and its association with the biodegradation of dental composites. Journal of Dental Research, 2004. 83(1): p. 22-6.
102. Hebling, J., D.H. Pashley, L. Tjaderhane, et al., Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. Journal of Dental Research, 2005. 84(8): p. 741-6.
103. Carrilho, M.R., S. Geraldeli, F. Tay, et al., In vivo preservation of the hybrid layer by chlorhexidine. Journal of Dental Research, 2007. 86(6): p. 529-33.
104. Breschi, L., P. Martin, A. Mazzoni, et al., Use of a specific MMP-inhibitor (galardin) for preservation of hybrid layer. Dental Materials, 2010. 26(6): p. 571-8.
105. Sadek, F.T., R.R. Braga, A. Muench, et al., Ethanol wet-bonding challenges current anti-degradation strategy. Journal of Dental Research, 2010. 89(12): p. 1499-504.
106. King, N.M., F.R. Tay, D.H. Pashley, et al., Conversion of one-step to two-step self-etch adhesives for improved efficacy and extended application. American Journal of Dentistry, 2005. 18(2): p. 126-134.
107. Pashley, E.L., K.A. Agee, D.H. Pashley, et al., Effects of one versus two applications of an unfilled, all-in-one adhesive on dentine bonding. Journal of Dentistry, 2002. 30(2-3): p. 83-90.
108. Hashimoto, M., H. Sano, E. Yoshida, et al., Effects of multiple adhesive coatings on dentin bonding. Operative Dentistry, 2004. 29(4): p. 416-423.
109. Ito, S., F.R. Tay, M. Hashimoto, et al., Effects of multiple coatings of two all-in-one adhesives on dentin bonding. Journal of Adhesive Dentistry, 2005. 7(2): p. 133-141.
110. Van Landuyt, K.L., J. De Munck, J. Snauwaert, et al., Monomer-solvent phase separation in one-step self-etch adhesives. Journal of Dental Research, 2005. 84(2): p. 183-188.
111. Cadenaro, M., L. Breschi, F. Antoniolli, et al., Influence of whitening on the degree of conversion of dental adhesives on dentin. European Journal of Oral Sciences, 2006. 114(3): p. 257-262.
112. Carrilho, M.R.O., R.M. Carvalho, M.F. De Goes, et al., Chlorhexidine preserves dentin bond in vitro. Journal of Dental Research, 2007. 86(1): p. 90-94.
113. Pasquantonio, G., F.R. Tay, A. Mazzoni, et al., Electric device improves bonds of simplified etch-and-rinse adhesives. Dental Materials, 2007. 23(4): p. 513-518.
114. Breschi, L., A. Mazzoni, D.H. Pashley, et al., Electric-current-assisted application of self-etch adhesives to dentin. Journal of Dental Research, 2006. 85(12): p. 1092-1096.
115. Brackett, W.W., S. Ito, F.R. Tay, et al., Microtensile dentin bond strength of self-etching resins: Effect of a hydrophobic layer. Operative Dentistry, 2005. 30(6): p. 733-738.
116. Hashimoto, M., F.R. Tay, S. Ito, et al., Permeability of adhesive resin films. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005. 74(2): p. 699-705.
117. Ito, S., F.R. Tay, M. Hashimoto, et al., Effects of multiple coatings of two all-in-one adhesives on dentin bonding. Journal of Adhesive Dentistry, 2005. 7(2): p. 133-41.
118. Pashley, D.H., Clinical correlations of dentin structure and function. Journal of Prosthetic Dentistry, 1991. 66(6): p. 777-81.
119. Augustin, C., S.J. Paul, H. Luthy, et al., Perfusing dentine with horse serum or physiologic saline: its effect on adhesion of dentine bonding agents. Journal of Oral Rehabilitation, 1998. 25(8): p. 596-602.
120. Abate, P.F., M. Polack, J.I. Stefanoni, et al., Shear bond strength of adhesive composite systems to human dentin. Acta Odontol Latinoam, 1996. 9(1): p. 21-6.
121. Brunton, P.A., A.J. Cowan, M.A. Wilson, et al., A three-year evaluation of restorations placed with a smear-layer-mediated dentin bonding agent in non-carious cervical lesions. Journal of Adhesive Dentistry, 1999. 1(4): p. 333-41.
122. Schupbach, P., I. Krejci, and F. Lutz, Dentin bonding: effect of tubule orientation on hybrid-layer formation. European Journal of Oral Sciences, 1997. 105(4): p. 344-52.
123. Blair, F., J. Whitworth, and R.W. Wassell, Impregnation by dentine bonding agents into instrumented root-face dentine. Journal of Dentistry, 1995. 23(5): p. 289-94.
124. Silikas, N. and D.C. Watts, High pressure liquid chromatography of dentin primers and bonding agents. Dental Materials, 2000. 16(2): p. 81-8.
125. Chain, M.C., D.H. Retief, F.R. Denys, et al., Laboratory evaluation of the A.R.T. bonding system. American journal of dentistry, 1994. 7(4): p. 195-9.
126. Reilly, B., E.L. Davis, R.B. Joynt, et al., Shear strength of resin developed by four bonding agents used with cast metal restorations. Journal of Prosthetic Dentistry, 1992. 68(1): p. 53-5.
127. Atta, M.O., B.G. Smith, and D. Brown, Bond strengths of three chemical adhesive cements adhered to a nickel-chromium alloy for direct bonded retainers. Journal of Prosthetic Dentistry, 1990. 63(2): p. 137-43.
128. Tay, F.R. and D.H. Pashley, Aggressiveness of contemporary self-etching systems. I: Depth of penetration beyond dentin smear layers. Dental Materials, 2001. 17(4): p. 296-308.
129. Yoshida, Y., B. Van Meerbeek, Y. Nakayama, et al., Adhesion to and decalcification of hydroxyapatite by carboxylic acids. Journal of Dental Research, 2001. 80(6): p. 1565-9.
130. Yoshioka, M., Y. Yoshida, S. Inoue, et al., Adhesion/decalcification mechanisms of acid interactions with human hard tissues. Journal of Biomedical Materials Research, 2002. 59(1): p. 56-62.
131. Fukuda, R., Y. Yoshida, Y. Nakayama, et al., Bonding efficacy of polyalkenoic acids to hydroxyapatite, enamel and dentin. Biomaterials, 2003. 24(11): p. 1861-7.
132. Fu, B., J. Yuan, W. Qian, et al., Evidence of chemisorption of maleic acid to enamel and hydroxyapatite. European Journal of Oral Sciences, 2004. 112(4): p. 362-7.
133. Fu, B., Q. Shen, W. Qian, et al., Interfacial interaction of tartaric acid with hydroxyapatite and enamel. Journal of Materials Science: Materials in Medicine, 2005. 16(9): p. 827-31.
134. Hannig, M., K.J. Reinhardt, and B. Bott, Self-etching primer vs phosphoric acid: an alternative concept for composite-to-enamel bonding. Operative Dentistry, 1999. 24(3): p. 172-80.
135. Floyd, C.J. and S.H. Dickens, Network structure of Bis-GMA- and UDMA-based resin systems. Dental Materials, 2006. 22(12): p. 1143-9.
136. Anusavice KJ, S., St. Louis, Mo., Rawls HR: Dental Polymers. In: Phillips' science of dental materials 11th ed. 2003. pp. 143-169,.
137. Craig RG and Powers JM, M., Inc., Missouri, Craig RG and Powers JM: Polymers and Polymerization. In: Restorative Dental Materials. 11th ed. 2002. pp. 185-198.
138. Park, Y.J., K.H. Chae, and H.R. Rawls, Development of a new photoinitiation system for dental light-cure composite resins. Dental Materials, 1999. 15(2): p. 120-7.
139. Neumann, M.G., C.C. Schmitt, G.C. Ferreira, et al., The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dental Materials, 2006. 22(6): p. 576-84.
140. Schneider, L.F., L.M. Cavalcante, S. Consani, et al., Effect of co-initiator ratio on the polymer properties of experimental resin composites formulated with camphorquinone and phenyl-propanedione. Dental Materials, 2009. 25(3): p. 369-75.
141. Ferracane, J.L., Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental Materials, 1985. 1(1): p. 11-4.
142. Anusavice KJ, S., St. Louis, Mo., Rawls HR and Esquivel-Upshaw J: Rrstorative Resins. In: Phillips' science of dental materials. 11th ed. 2003. pp. 399-441.
143. Rueggeberg, F.A. and R.G. Craig, Correlation of parameters used to estimate monomer conversion in a light-cured composite. Journal of Dental Research, 1988. 67(6): p. 932-7.
144. Shimura, R., T. Nikaido, M. Yamauti, et al., Influence of curing method and storage condition on microhardness of dual-cure resin cements. Dental Materials, 2005. 24(1): p. 70-5.
145. Issa, Y., D.C. Watts, P.A. Brunton, et al., Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dental Materials, 2004. 20(1): p. 12-20.
146. Flamia, R., G. Lanza, A.M. Salvi, et al., Conformational study and hydrogen bonds detection on elastin-related polypeptides using X-ray photoelectron spectroscopy. Biomacromolecules, 2005. 6(3): p. 1299-309.
147. Gilbert, J.B., M.F. Rubner, and R.E. Cohen, Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers. Proc Natl Acad Sci U S A, 2013. 110(17): p. 6651-6.
148. Zhou, S., X. Zheng, X. Yu, et al., Hydrogen Bonding Interaction of Poly(d,l-Lactide)/hydroxyapatite Nanocomposites. Chemistry of Materials, 2006. 19(2): p. 247-253.
149. 楊瑞森, 陳.李., 生物電子顯微鏡學. 行政院國家科學委員會精密儀器發展中心編印.
150. Bitter, K., S. Paris, C. Pfuertner, et al., Morphological and bond strength evaluation of different resin cements to root dentin. European Journal of Oral Sciences, 2009. 117(3): p. 326-33.
151. Zhang, Y. and Y. Wang, The effect of hydroxyapatite presence on the degree of conversion and polymerization rate in a model self-etching adhesive. Dental Materials, 2012. 28(3): p. 237-44.
152. Fu, B., X. Sun, W. Qian, et al., Evidence of chemical bonding to hydroxyapatite by phosphoric acid esters. Biomaterials, 2005. 26(25): p. 5104-10.
153. Fukegawa, D., S. Hayakawa, Y. Yoshida, et al., Chemical interaction of phosphoric acid ester with hydroxyapatite. Journal of Dental Research, 2006. 85(10): p. 941-4.
154. Dimitrouli, M., W. Geurtsen, and A.K. Luhrs, Comparison of the push-out strength of two fiber post systems dependent on different types of resin cements. Clinical Oral Investigations, 2012. 16(3): p. 899-908.
155. Ebert, J., A. Leyer, O. Gunther, et al., Bond strength of adhesive cements to root canal dentin tested with a novel pull-out approach. Journal of Endodontics, 2011. 37(11): p. 1558-61.
156. Mazzoni, A., G. Marchesi, M. Cadenaro, et al., Push-out stress for fibre posts luted using different adhesive strategies. European Journal of Oral Sciences, 2009. 117(4): p. 447-53.
157. Radovic, I., C. Mazzitelli, N. Chieffi, et al., Evaluation of the adhesion of fiber posts cemented using different adhesive approaches. European Journal of Oral Sciences, 2008. 116(6): p. 557-63.
158. Walter, R., P.A. Miguez, and P.N. Pereira, Microtensile bond strength of luting materials to coronal and root dentin. Journal of Esthetic and Restorative Dentistry, 2005. 17(3): p. 165-71; discussion 171.
159. Goracci, C., A.U. Tavares, A. Fabianelli, et al., The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. European Journal of Oral Sciences, 2004. 112(4): p. 353-61.
160. Van Landuyt, K.L., J. Snauwaert, J. De Munck, et al., Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials, 2007. 28(26): p. 3757-3785.
161. Shin, W.S., X.F. Li, B. Schwartz, et al., Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dental Materials, 1993. 9(5): p. 317-24.
162. Collares, F.M., F.F. Portella, V.C. Leitune, et al., Discrepancies in degree of conversion measurements by FTIR. Brazilian Oral Research, 2014. 28(1): p. 9-15.
163. Pianelli, C., J. Devaux, S. Bebelman, et al., The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. Journal of Biomedical Materials Research, 1999. 48(5): p. 675-81.
164. Di Hipolito, V., A.F. Reis, S.B. Mitra, et al., Interaction morphology and bond strength of nanofilled simplified-step adhesives to acid etched dentin. European Journal of Dentistry, 2012. 6(4): p. 349-60.
165. Perdigao, J., M.M. Lopes, and G. Gomes, Interfacial Adaptation of Adhesive Materials to Root Canal Dentin. Journal of Endodontics, 2007. 33(3): p. 259-263.
166. Yang, B., K. Ludwig, R. Adelung, et al., Micro-tensile bond strength of three luting resins to human regional dentin. Dental Materials, 2006. 22(1): p. 45-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55600-
dc.description.abstract為了恢復牙齒良好的美觀及功能,玻璃纖維根柱(fiber post)在臨床的使用日益頻繁,然而玻璃纖維根柱的黏著強度仍有改善的空間。有鑒於玻璃纖維根柱的失敗常起因於與牙本質的黏著力不佳,本研究以研發新型樹脂黏著劑(resin cement),提升樹脂黏著劑與牙本質的結合強度為主要目的。
使用bis[2-(methacryloyloxy)-ethyl] phosphate (2MP)製成bonding agent,並以isobornyl acrylate (IBOA) 及ethylhexylacrylate (EHA)為樹脂黏著劑之原料,透過微拉伸試驗(microtensile test)、推離鍵結試驗(push-out test)及破裂韌性試驗(fracture toughness test)測試含不同比例2MP (30%, 35%, 40%)的bonding agent,和市售樹脂黏著劑(NX3, Variolink II, RelyXUnicem, Panavia F 2.0)所表現之黏著強度,並以長時間恆溫水浴(37℃, 5 months)測試各組別長時間的黏著強度變化。此外,對bonding agent進行保質期測試,透過紅外線光譜儀(ATR-FTIR),以及微拉伸試驗,觀察保存於4℃中,3個月後,其自聚合程度以及黏著強度的變化。再使用電子能譜儀(XPS)分析牙本質中的膠原蛋白(Collagen Type I) 與bonding agent之間的鍵結機制,並以穿透式電子顯微鏡(TEM)觀察所研發之bonding agent (2MP)與牙本質間形成之hybrid layer。
結果顯示,含35%-2MP的bonding agent,配合含IBOA, EHA的resin cement組別,能達到最佳的牙本質黏著強度。保質期測試結果表示,隨著保存期間的拉長,bonding agent有逐漸自聚合的情形,並影響其黏著強度的表現。電子能譜儀分析顯示,bonding agent中的磷酸根可以與膠原蛋白產生氫鍵,以提供黏著強度的來源。穿透式電子顯微鏡觀察到,在黏著層處能形成穩固的hybrid layer,厚度約為5-6μm。實驗結果證實,2MP, IBOA, EHA 能有效的提高樹脂黏著劑與牙本質的黏著強度,有應用於開發新型樹脂黏著劑之潛力。
zh_TW
dc.description.abstractFiber posts have been used more frequently in dental restoration to achieve better aesthetic outcomes. However, the loss of adhesion or detachment of fiber posts from root canals is the primary cause of failure; therefore, the purpose of this study is to formulate a novel type of resin cement that improves the bonding strength of fiber posts at the dentin-cement interface.
  Three concentrations (30, 35, and 40 wt%) of bis[2-(methacryloyloxy)-ethyl] phosphate (2MP) were prepared as key dentin bonding agent components and isobornyl acrylate (IBOA) and ethylhexylacrylate (EHA) were used as key components to fabricate the resin cement. The specimens were tested after cementation 24 hours and storage in distilled water at 37℃for 5 months to observe long term stability by evaluating the bond strength. The adhesive strength of these fabricated cements to coronal and root canal dentin were tested using a microtensile bond test, push-out bond test, and fracture toughness test, and to make comparisons with 4 commercially available resin cements (NX3, Variolink II, RelyX Unicem, and Panavia F 2.0). In addition, the shelf life of bonding agent was tested by infrared spectroscopy (ATR-FTIR) and microtensile test. Furthermore, we propose a model which explores the underlying mechanism of high bond strength between bonding agent and collagen using depth profiling of X-ray photoelectron spectroscopy (XPS). The interface of the adhesive and dentin was observed under transmission electron microscope (TEM).
  The results of the bond strength tests show that 30%-2MP, 35%-2MP, and 40%-2MP with IBOA and EHA produce greater or similar adhesion to dentin compared with the 4 commercial resin cements. The shelf life test indicates that inhibitors can prevent spontaneous initiation and promote shelf life. The results of XPS show, when bonding agent was cast on the dentin, the phosphate in the bonding agent can migrate to collagen side and produce more hydrogen-bond to increase bond strength. TEM revealed the morphology of dentin- adhesive interface, with a 5-6 μm-thick hybrid layer.
  Within the results of this study, the adhesion to the coronal and root canal dentin can be improved significantly by the addition of key components (2MP, IBOA, and EHA) to resin cements. These components exhibit the potential for the development of a novel type of resin cement.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:11:52Z (GMT). No. of bitstreams: 1
ntu-103-R01450010-1.pdf: 8217597 bytes, checksum: 55bb755ecabaccc026eb6baa3dba4f13 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 IX
表目錄 XII
第一章 前言 1
第二章 文獻回顧 2
2.1牙本質的成分及結構 2
2.1.1牙本質中的有機基質 2
2.1.2牙本質中的無機物 3
2.1.3牙本質的結構 6
2.2.1樹脂黏著劑應用於根柱的黏著 8
2.2.2纖維根柱(fiber post) 9
2.3黏著界面之老化及穩定性 11
2.3.1混合層(hybrid layer)的老化 11
2.3.3暴露的膠原蛋白纖維之降解 15
2.3.4礦化牙本質的內源溶膠原酶活性 16
2.3.5如何提高黏著穩定性 18
2.4牙本質黏著機制 20
2.4.1牙本質有機物的黏著機制 20
2.4.2牙本質無機物的黏著機制 21
2.4.2.1羧酸或聚羧酸與氫氧基磷灰石間的化學鍵結 22
2.4.2.2磷酸酯與與氫氧基磷灰石間的化學鍵結 23
2.5樹脂黏著劑之聚合機制與聚合程度評估 24
2.5.1自由基聚合反應 24
2.5.2聚合程度 32
第三章 材料與方法 33
3.1實驗材料 33
3.2實驗儀器 45
3.3長時間黏著強度測試 46
3.3.1製備含不同比例2MP之bonding agent 46
3.3.2黏著強度測試之樣品製備 47
3.3.2.1微拉伸鍵結強度測試牙齒樣品之製備 48
3.3.2.2推離鍵結強度測試牙齒樣品之製備 49
3.3.2.3破裂韌性強度測試牙齒-樹脂黏著劑塊材製備 51
3.3.3黏著強度測試 52
3.3.3.1微拉伸鍵結強度測試 52
3.3.3.2推離鍵結強度測試 53
3.3.3.3 破裂韌性鍵結強度測試 54
3.3.3.4數據分析 54
3.4樹脂黏著劑保質期測試 55
3.4.1抑制劑與保存時間對黏著強度的影響 55
3.4.1.1製備含不同抑制劑之樹脂黏合劑 (bonding agents) 55
3.4.1.2微拉伸鍵結強度測試牙齒樣品之製備 56
3.4.1.3微拉伸鍵結強度測試 56
3.4.1.4數據分析 56
3.4.2以傅立葉紅外線光譜儀(FT-IR)分析聚合程度 57
3.4.2.1傅立葉紅外線光譜儀(FT-IR)測試方法 57
3.4.2.2數據分析 57
3.5牙本質中之膠原蛋白與樹脂黏著劑之反應機制分析 58
3.5.1牙本質膠原蛋白萃取 58
3.5.3 X 射線光電子光譜儀縱深元素分析(Depth Profile) 59
3.5.4數據統計分析 59
3.6以穿透式電子顯微鏡觀察黏著界面 60
3.6.1穿透式電子顯微鏡樣品製備 60
3.6.2穿透式電子顯微鏡(TEM) 61
第四章 結果 63
4.1長時間黏著強度測試 63
4.1.1微拉伸鍵結強度測試 63
4.1.2推離鍵結強度測試 63
4.1.3破裂韌性強度測試 64
4.2樹脂黏著劑保質期測試 65
4.2.1微拉伸鍵結強度測試 65
4.2.2以傅立葉紅外線光譜儀(FT-IR)分析聚合程度 66
4.3牙本質中之膠原蛋白與樹脂黏著劑之反應機制分析 67
4.4穿透式電子顯微鏡(TEM) 68
第五章 討論 77
5.1長時間黏著強度測試 77
5.2樹脂黏著劑保質期測試 78
5.3牙本質中之膠原蛋白與樹脂黏著劑之反應機制分析 79
5.4穿透式電子顯微鏡(TEM) 80
第六章 結論 82
參考文獻 83
dc.language.isozh-TW
dc.subject牙本質zh_TW
dc.subject電子能譜儀zh_TW
dc.subject透式電子顯微鏡zh_TW
dc.subject樹脂黏著劑zh_TW
dc.subjectdentinen
dc.subjectTEMen
dc.subjectXPSen
dc.subjectbonding agenten
dc.subjectresin cementen
dc.title研發人類牙本質高鍵結強度之新型樹脂黏著劑zh_TW
dc.titleA novel resin cement with high bond strength to human dentinen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王大銘(Da-Ming Wang),張哲政(Che-Chen Chang)
dc.subject.keyword牙本質,樹脂黏著劑,電子能譜儀,透式電子顯微鏡,zh_TW
dc.subject.keyworddentin,resin cement,bonding agent,XPS,TEM,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2014-08-21
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
8.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved