Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55594Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林銘郎(Ming-Lang Lin) | |
| dc.contributor.author | Yu-Hsuan Chang | en |
| dc.contributor.author | 張育瑄 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:11:30Z | - |
| dc.date.available | 2021-09-01 | |
| dc.date.copyright | 2020-08-25 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-30 | |
| dc.identifier.citation | 林劭儒(2019)。逆向斜交坡中不同節理組特性對楔形岩體變形及破壞機制影響之探討。國立臺灣大學土木工程學研究所碩士論文。 洪如江(2007)。初等工程地質學大綱。台北市:地工技術研究發展基金會。 陸安(2018)。向上滲流水對順向節理岩體邊坡可滑動體形成之影響。國立臺灣大學土木工程學研究所碩士論文。 黃紹宬(2015)。地下水透過節理向上滲流對邊坡穩定的影響。國立臺灣大學土木工程學研究所碩士論文。 Barton, N., Bandis, S., and Bakhtar, K. (1985). Strength, deformation and conductivity coupling of rock joints. In International journal of rock mechanics and mining sciences geomechanics abstracts (Vol. 22, No. 3, pp. 121-140). Pergamon. CloudCompare (Version 2.10.2) (Software). (2019) GPL software Retrieved from http://www.cloudcompare.org/ Cundall, P. A. (1971). A computer model for simulating progressive, large-scale movement in blocky rock system. In Proceedings of the International Symposium on Rock Mechanics, 1971. Dewez, T. J., Girardeau-Montaut, D., Allanic, C. and Rohmer, J. (2016). Facets: A cloudcompare plugin to extract geological planes from unstructured 3D point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 799-804. Dershowitz, W. S., and Herda, H. H. (1992). Interpretation of fracture spacing and intensity. In The 33th us symposium on rock mechanics (USRMS). American Rock Mechanics Association. Havaej, M., Wolter, A., and Stead, D. (2015). The possible role of brittle rock fracture in the 1963 Vajont Slide, Italy. International Journal of Rock Mechanics and Mining Sciences, 78, 319-330. Hoek, E., and Bray, J. W. (1977). Rock Slope Engineering, 2nd. Edn., The Institute of Mining and Metallurgy, London, 527. Hoek, E., and Bray, J. D. (1981). Rock slope engineering. CRC Press. Itasca Consulting Group, Inc. (2016). “3DEC-Three-dimension Distinct Element Code, ver. 5.2”. Minneapolis MN: Itasca Kulatilake, P. H. S. W., and Wu, T. H. (1984). Estimation of mean trace length of discontinuities. Rock Mechanics and Rock Engineering, 17(4), 215-232. Kim, B. H., Cai, M., Kaiser, P. K., and Yang, H. S. (2007). Estimation of block sizes for rock masses with non-persistent joints. Rock mechanics and rock engineering, 40(2), 169. Kumsar, H., Aydan, Ö., and Ulusay, R. (2000). Dynamic and static stability assessment of rock slopes against wedge failures. Rock Mechanics and Rock Engineering, 33(1), 31-51. Mauldon, M. (1998). Estimating mean fracture trace length and density from observations in convex windows. Rock Mechanics and Rock Engineering, 31(4), 201-216. Pipatpongsa, T., Heng, S., Ohta, H., and Takeyama, T. (2010). Analysis of groundwater influence and destabilized mechanisms of the Guinsaugon rockslide. Dimension, 1143790, 1143360. Pahl, P. J. (1981). Estimating the mean length of discontinuity traces. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts (Vol. 18, No. 3, Pp. 221-228). Pergamon. Priest, S. D. (2012). Discontinuity analysis for rock engineering. Springer Science Business Media. Riquelme, A. J., Abellán, A., and Tomás, R. (2015). Discontinuity spacing analysis in rock masses using 3D point clouds. Engineering Geology, 195, 185-195. Romer, C., and Ferentinou, M. (2019). Numerical investigations of rock bridge effect on open pit slope stability. Journal of Rock Mechanics and Geotechnical Engineering, 11(6), 1184-1200. Selby, M. J. (1982). Hillslope materials and processes. Hillslope materials and processes. Wong, L. N. Y., and Wu, Z. (2014). Application of the numerical manifold method to model progressive failure in rock slopes. Engineering Fracture Mechanics, 119, 1-20. Wyllie, D. C., and Mah, C. (2004). Rock slope engineering. CRC Press. Chang, Y. H., Lin, S. R., and Lin, M. L. (2019). Characterizing Rock Joint Geometrical Properties for Slope Stability through UAV Photogrammetry and 3D Point Cloud Analysis. In Geophysical Research Abstracts (Vol. 21). Zhang, L. (2016). Engineering properties of rocks. Butterworth-Heinemann. Zhang, S., Xu, Q., Peng, D., Zhu, Z., Li, W., Wong, H., and Shen, P. (2020). Stability analysis of rock wedge slide subjected to groundwater dynamic evolution. Engineering Geology, 270, 105528. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55594 | - |
| dc.description.abstract | 傳統的斜交坡破壞模式,討論的為單一塊體之楔型破壞,但現地的邊坡破壞往往是由多塊體所組成,是一種複雜的複合型破壞模式,該破壞行為受邊坡上各組節理的幾何特性,如位態、間距與延續性所主控,本研究將此類發生於斜交岩石坡的破壞稱為「多節理複合型的楔型破壞」。 位於台灣南部台 20 線明霸克露橋的上邊坡破壞與台灣北部橫貫公路台7線32.5K的道路邊坡崩塌均屬之,兩處案例的崩塌均造成了下方道路的嚴重毀損,且崩塌仍持續在發生,因此本研究認為有深入了解節理特性於「多節理複合型的楔型破壞」中影響之必要。 其中在32.5K的道路邊坡案例中,於現地調查時,在岩石邊坡上除了可以觀察到多組明顯的節理組外,亦可見到地下水由節理間滲出,推測該次「多節理複合型的楔型破壞」的發生與節理中的地下水相關。岩體中的地下水在節理裂隙間流動,會使塊體受到側向及向上的水壓力,造成邊坡的不穩定,其流路由邊坡上的節理特性所主控。 為了解節理岩體於斜交坡中受地下水影響之破壞行為,本研究以滲流傾斜試驗與三維離散元素法模擬分析軟體3DEC (Three-Dimensional Distinct Element Code)進行簡化楔型破壞的模擬,試驗內容分為單塊、四塊與多塊塊體的破壞分析,探討節理岩體中之裂隙水壓、出水位置、滑動面摩擦角度與塊體滑動之關係。 接著,進行簡化模型之數值模型與物理模型試驗的校核,後於3DEC中建構了上述兩個現地案例的全尺度模型,進行「多節理複合型楔型破壞」之模擬,建立節理間距與延續性跟崩塌量體、深度…等間的關係,並在地下水作用下之岩坡崩塌行為,了解崩塌量體與水壓力間的關係,最後重現並預測現地斜交岩石邊坡之崩塌的發生及崩落塊體的運移與堆積過程。 | zh_TW |
| dc.description.abstract | Wedge failure is known as single block failure which is happened on the oblique slope according to the previous studies, but in the field the failure often occurs with multi-blocks. It is called “multi-fractured complex wedge failure” in this study. This kind of failure has complex failure mode which is dominated by the geometrical properties of rock joint, such as orientation, spacing and persistence. Two classic cases in Taiwan, which were occurred at a steep cut rock slope on Bridge Minbaklu, Provincial Highway 20 and 32.5k, Provincial Highway 7. Both cases destroyed the roads and protection measures. They were completely recorded with UAV-surveys, field investigations and witness. The failure is keep happening. The influence of the joint characterization on “multi-fractured complex wedge failure” need to be study in more detail. According to the field investigation of the case occurred on 32.5k, Provincial Highway 7, groundwater was discovered flowing out from the line of intersection of persistence joints, which could be the main reason leads to the failure. Joint persistence and groundwater are critical factors that influence the stability of rock slope. Persistence dominates the extent of pre-existing potential failure surfaces. Under certain conditions, slope instability may vary with time, as the propagation of existing joints leads to the development of fully persistence failure surfaces. At the same time, groundwater may travel through the fracture network and provides an external force to unstable rock masses, resulting in the damage of rock slope failure hard to predict. In this study, sandbox model was applied to clarify the effects of the groundwater and joint friction on failures of single rock wedge. In addition, the software 3DEC (Three-Dimensional Distinct Element Code), which is based on Distinct Element method, was carried out to extent the analysis conditions. The results of sandbox simulations were used to calibrate the performance of the numerical model, especially the coupled hydro-mechanical analysis. The stability of jointed rock slopes under different spacing, persistence and various water pressure conditions has been studied. It is believed that the study can enhance the way for stability analysis and monitoring of the potential failure of jointed rock slopes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:11:30Z (GMT). No. of bitstreams: 1 U0001-2907202017190200.pdf: 9775233 bytes, checksum: d4b9f158de2a50f3382b9b336c7a134e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii ABSTRACT iii 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.1.1 研究動機 1 1.1.2 研究目的 3 1.2 研究流程及架構 4 第二章 文獻回顧 5 2.1 岩石邊坡節理幾何性質調查方法 5 2.1.1 UAV攝影測量與點雲模型分析 5 2.1.2 傳統測線法與測窗法 7 2.2 節理延續性對岩石邊坡穩定之影響 9 2.3 地下水對斜交岩石邊坡穩定之影響 13 2.3.1 斜交坡楔形破壞 13 2.3.2 節理裂隙中的水 16 2.3.3 地下水對邊坡穩定性的影響 23 2.4 3DEC軟體介紹 26 2.4.1 基本介紹 26 2.4.2 運算原理 26 2.4.3 塊體組成律 28 2.4.4 不連續面組成律 29 2.4.5 3DEC中的水力耦合 31 第三章 研究方法 34 3.1 現地調查 35 3.1.1 UAV及攝影測量 35 3.1.2 節理幾何特性之點雲分析 36 3.2 小尺度物理模型(地下水分析) 38 3.2.1 試驗儀器 38 3.2.2 試驗材料 41 3.2.3 試驗方法與步驟 45 3.3 離散元素法軟體(3DEC)之數值模型 47 3.3.1 數值模型建置流程 48 3.3.2 模擬參數決定 51 3.3.3 數值模擬水力邊界設置 52 3.3.4 模擬成果校核依據 55 第四章 現地調查與點雲分析成果 56 4.1 明霸克露橋案例 57 4.1.1 地形與地質 57 4.1.2 崩塌歷史 58 4.1.3 節理幾何特性分析 59 4.2 台7線北橫公路32.5K案例 61 4.2.1 地形與地質 61 4.2.2 崩塌歷史 62 4.2.3 地下水調查 63 4.2.4 節理幾何特性分析 64 第五章 地下水對斜交坡楔型塊體穩定之影響 66 5.1 物理砂箱試驗 66 5.1.1 單塊 67 5.1.2 四塊 74 5.2 數值試驗與物理試驗之校合 76 5.3 數值模擬成果-多塊塊體 78 第六章 現地案例應用 81 6.1 台20線明霸克露橋案例之模擬成果 81 6.1.1 節理間距於邊坡穩定之影響 83 6.1.2 節理延續性於邊坡穩定之影響 85 6.2 北橫公路台7線32.5K案例之模擬成果 88 6.2.1 節理延續性與解壓順序於邊坡穩定之影響 89 6.2.2 數值模型與崩塌現況之校核 92 6.2.3 地下水於節理岩體穩定性之影響 94 第七章 結論與建議 98 7.1 結論 98 7.1.1 現地調查 98 7.1.2 物理模型 98 7.1.3 現地案例全尺度數值模擬-台20線明霸克露橋案例 99 7.1.4 現地案例全尺度數值模擬-北橫公路台7線32.5K案例 100 7.2 建議 101 參考文獻 102 附錄A 委員問答 105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多節理複合型楔型破壞 | zh_TW |
| dc.subject | 楔型破壞 | zh_TW |
| dc.subject | 地下水 | zh_TW |
| dc.subject | 節理延續性 | zh_TW |
| dc.subject | 3DEC | zh_TW |
| dc.subject | 3DEC | en |
| dc.subject | Wedge failure | en |
| dc.subject | Groundwater | en |
| dc.subject | Joint persistence | en |
| dc.subject | Multi-fractured complex wedge failure | en |
| dc.title | 節理特性與地下水對節理岩坡破壞機制之影響 | zh_TW |
| dc.title | Influence of Joint Characteristics and Groundwater on Wedge Failure Mechanism of Jointed Rock Slopes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 翁孟嘉(Meng-Chia Weng),李宏輝(Hung-Hui Li),黃文昭(Wen-Chao Huang) | |
| dc.subject.keyword | 楔型破壞,地下水,節理延續性,3DEC,多節理複合型楔型破壞, | zh_TW |
| dc.subject.keyword | Wedge failure,Groundwater,Joint persistence,3DEC,Multi-fractured complex wedge failure, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU202002048 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2907202017190200.pdf Restricted Access | 9.55 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
