請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
| dc.contributor.author | Pin-Han Lo | en |
| dc.contributor.author | 羅品涵 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:10:48Z | - |
| dc.date.available | 2025-08-06 | |
| dc.date.copyright | 2020-08-14 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-06 | |
| dc.identifier.citation | 1. Henriksen, S. D. Moraxella, Acinetobacter, and the Mimeae. Bacteriol. Rev. 37, 522–561 (1973). 2. Nikaido, H. Nakae, T. The Outer Membrane of Gram-negative Bacteria. Adv. Microb. Physiol. 20, 163–250 (1980). 3. Baumann, P., Doudoroff, M. Stanier, R. Y. A Study of the Moraxella Group II. Oxidative-negative Species (Genus Acinetobacter). J. Bacteriol. 95, 1520–1541 (1968). 4. Liu, Z. hui et al. Biodegradation of phenol by bacteria strain Acinetobacter Calcoaceticus PA isolated from phenolic wastewater. Int. J. Environ. Res. Public Health 13, (2016). 5. Lithgow, Karen V, Scott, Nichollas E, Iwashkiw, Jeremy A, Thomson, Euan L S, Foster, Leonard J, Feldman, Mario F, Dennis, J. J. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol. Microbiol. 92, 116–137 (2014). 6. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. U. S. A. 102, 9247–9252 (2005). 7. Schirm, M., Schoenhofen, I. C., Logan, S. M., Waldron, K. C. Thibault, P. Identification of Unusual Bacterial Glycosylation by Tandem Mass Spectrometry Analyses of Intact Proteins. Anal. Chem. 77, 7774–7782 (2005). 8. Salah Ud Din, A. I. M. Roujeinikova, A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell. Mol. Life Sci. 74, 3293–3303 (2017). 9. Chidwick, H. S., Fascione, M. A. Chidwick, H. S., Fascione, M. A. Mechanistic and structural studies into the biosynthesis of the bacterial sugar pseudaminic acid (Pse5Ac7Ac). Org. Biomol. Chem. 18, 799–809 (2020). 10. Espinal, P., Martí, S. Vila, J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect. 80, 56–60 (2012). 11. Almasaudi, S. B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 25, 586–596 (2018). 12. Gräser, Y, Klare, I, Halle, E, Gantenberg, R, Buchholz, P, Jacobi, H D, Presber, W, Schönian, G. et al. Epidemiological study of an Acinetobacter baumannii outbreak by using polymerase chain reaction fingerprinting. J. Clin. Microbiol. 31, 2417–2420 (1993). 13. Seifert, H., Baginski, R., Schulze, A. Pulverer, G. The Distribution of Acinetobacter Species in Clinical Culture Materials. Zentralblatt für Bakteriol. 279, 544–552 (1993). 14. Abdel-el-haleem D. Minireview Acinetobacter : environmental and biotechnological applications. African J. Biotechnol. 2, 71–74 (2003). 15. Bonten, M. J. M. Weinstein, R. A. The Role of Colonization in the Pathogenesis of Nosocomial Infections. Infect. Control Hosp. Epidemiol. 17, 193–200 (1996). 16. McBride, M. J. Shining a Light on an Opportunistic Pathogen. J. Bacteriol. 192, 6325–6326 (2010). 17. García-Garmendia, J. L., Garnacho-Montero, J., Ortiz-Leyba, C., Jiménez-Jiménez, F. J. Gili-Miner, M. Risk factors for acinetobacter baumannii (AB) nosocomial bacteremia in critically ill patients: A cohort study. Crit. Care Med. 27, 939–946 (1999). 18. Chusri, S. et al. Clinical Outcomes of Hospital-Acquired Infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob. Agents Chemother. 58, 4172–4179 (2014). 19. Bouvet, P. J. M. Grimont, P. A. D. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus a. Int. J. Syst. Bacteriol. 36, 228–240 (1986). 20. Espinal, P., Seifert, H., Dijkshoorn, L., Vila, J. Roca, I. Rapid and accurate identification of genomic species from the Acinetobacter baumannii (Ab) group by MALDI-TOF MS. Clin. Microbiol. Infect. 18, 1097–1103 (2012). 21. Bartual, S. G. et al. Development of a Multilocus Sequence Typing Scheme for Characterization of Clinical Isolates of Acinetobacter baumannii. J. Clin. Microbiol. 43, 4382–4390 (2005). 22. Jolley, K. A., Bray, J. E. Maiden, M. C. J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome open Res. 3, 124 (2018). 23. Zhang, H. Z., Zhang, J. S. Qiao, L. The Acinetobacter baumannii group: a systemic review. World J. Emerg. Med. 4, 169–174 (2013). 24. Antunes, L. C. S., Visca, P. Towner, K. J. Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71, 292–301 (2014). 25. Chopra, T. et al. Risk Factors and Outcomes for Patients with Bloodstream Infection Due to Acinetobacter baumannii-calcoaceticus Complex. Antimicrob. Agents Chemother. 58, 4630–4635 (2014). 26. Bergogne-Bérézin, E. Towner, K. J. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9, 148–165 (1996). 27. Fletcher, C. M., Coyne, M. J., Villa, O. F., Chatzidaki-Livanis, M. Comstock, L. E. A General O-Glycosylation System Important to the Physiology of a Major Human Intestinal Symbiont. Cell 137, 321–331 (2009). 28. Garnacho-Montero, J. et al. Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Intensive Care Med. 31, 649–655 (2005). 29. McConnell, M. J., Actis, L. Pachón, J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 37, 130–155 (2013). 30. Garnacho-Montero, J. et al. Treatment of Multidrug-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia (VAP) with Intravenous Colistin: A Comparison with Imipenem-Susceptible VAP. Clin. Infect. Dis. 36, 1111–1118 (2003). 31. Kwa, A. L. H., Loh, C., Low, J. G. H., Kurup, A. Tam, V. H. Nebulized Colistin in the Treatment of Pneumonia Due to Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Clin. Infect. Dis. 41, 754–757 (2005). 32. Anstey, N. M., Currie, B. J. Withnall, K. M. Community-Acquired Acinetobacter Pneumonia in the Northern Territory of Australia. Clin. Infect. Dis. 14, 83–91 (1992). 33. Peleg, A. Y. et al. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J. Antimicrob. Chemother. 59, 128–131 (2006). 34. Chen, M. Z. et al. Severe Community-Acquired Pneumonia due to Acinetobacter baumannii. Chest 120, 1072–1077 (2001). 35. Smolyakov, R. et al. Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: risk factors and outcome with ampicillin-sulbactam treatment. J. Hosp. Infect. 54, 32–38 (2003). 36. Johnson, J. K. et al. Comparison of molecular typing methods for the analyses of Acinetobacter baumannii from ICU patients. Diagn. Microbiol. Infect. Dis. 86, 345–350 (2016). 37. Farrell, D. J., Sader, H. S., Flamm, R. K. Jones, R. N. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int. J. Antimicrob. Agents 43, 533–539 (2014). 38. Su, C. H. et al. Increase of carbapenem-resistant Acinetobacter baumannii infection in acute care hospitals in Taiwan: association with hospital antimicrobial usage. PLoS One 7, e37788–e37788 (2012). 39. Brossard, K. A. Campagnari, A. A. The Acinetobacter baumannii Biofilm-Associated Protein Plays a Role in Adherence to Human Epithelial Cells. Infect. Immun. 80, 228–233 (2012). 40. Vijayakumar, S. et al. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates. Front. Public Heal. 4, 1–9 (2016). 41. Lee, C. R. et al. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology vol. 7 55 (2017). 42. Sutherland, I. W. Polysaccharases for microbial exopolysaccharides. Carbohydr. Polym. 38, 319–328 (1999). 43. Kambourova, M., Oner, E. T. Poli, A. Chapter 15 - Exopolysaccharides from Prokaryotic Microorganisms—Promising Sources for White Biotechnology Processes. Ind. Biorefineries White Biotechnol. 523–554 (2015). 44. Geisinger, E. Isberg, R. R. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog. 11, e1004691–e1004691 (2015). 45. Dubos, R. Avery, O. T. Decomposition of the capsular polysaccharide of pneumococcus type III by a bacterial enzyme. J. Exp. Med. 54, 51–71 (1931). 46. Shen, Y. et al. Outer Membrane Vesicles of a Human Commensal Mediate Immune Regulation and Disease Protection. Cell Host Microbe 12, 509–520 (2012). 47. Kaparakis Liaskos, M. Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15, 375–387 (2015). 48. Shlaes, D. M. Bradford, P. A. Antibiotics-From There to Where?: How the antibiotic miracle is threatened by resistance and a broken market and what we can do about it. Pathog. Immun. 3, 19–43 (2018). 49. Roach, D. R. Donovan, D. M. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5, e1062590 (2015). 50. Sheng, W. H. et al. A multicenter study of risk factors and outcome of hospitalized patients with infections due to carbapenem-resistant Acinetobacter baumannii. Int. J. Infect. Dis. 14, e764–e769 (2010). 51. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012). 52. Basak, S., Singh, P. Rajurkar, M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J. Pathog. 2016, 4065603 (2016). 53. Kenyon, J. J., Marzaioli, A. M., Hall, R. M. De Castro, C. Structure of the K2 capsule associated with the KL2 gene cluster of Acinetobacter baumannii. Glycobiology 24, 554–563 (2014). 54. Zowawi, H. M. et al. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates in the Gulf Cooperation Council States: Dominance of OXA-23-Type Producer. J. Clin. Microbiol. 53, 896–903 (2015). 55. Olaitan, A. O. et al. Emergence of multidrug-resistant Acinetobacter baumannii producing OXA-23 carbapenemase, Nigeria. Int. J. Infect. Dis. 17, e469–e470 (2013). 56. Sheng, W. H. et al. A multicenter study of risk factors and outcome of hospitalized patients with infections due to carbapenem-resistant Acinetobacter baumannii. Int. J. Infect. Dis. 14, e764–e769 (2010). 57. Chang, Y. W. et al. Characterization of carbapenem-resistant Acinetobacter baumannii isolates in a Chinese teaching hospital. Front. Microbiol. 6, 1–9 (2015). 58. Chang, Y. Y. et al. Comparison of Cefepime-Cefpirome and Carbapenem Therapy for Acinetobacter Bloodstream Infection in a Multicenter Study. Antimicrob. Agents Chemother. 64, e02392-19 (2020). 59. Zunk, Matthew, Williams, James, Carter, James, Kiefel, M. J. A new approach towards the synthesis of pseudaminic acid analogues. Org. Biomol. Chem. 12, 2918–2925 (2014). 60. Zunk, M. Kiefel, M. J. The occurrence and biological significance of the α-keto-sugars pseudaminic acid and legionaminic acid within pathogenic bacteria. Rsc Adv. 4, 3413–3421 (2014). 61. Lewis, A. L. et al. Genomic and Metabolic Profiling of Nonulosonic Acids in Vibrionaceae Reveal Biochemical Phenotypes of Allelic Divergence in Vibrio vulnificus. Appl. Environ. Microbiol. 77, 5782–5793 (2011). 62. Lee, I. M. et al. Pseudaminic Acid on Exopolysaccharide of Acinetobacter baumannii Plays a Critical Role in Phage-Assisted Preparation of Glycoconjugate Vaccine with High Antigenicity. J. Am. Chem. Soc. 140, 8639–8643 (2018). 63. Senchenkova, S. N. et al. Structure of the capsular polysaccharide of Acinetobacter baumannii ACICU containing di-N-acetylpseudaminic acid. Carbohydr. Res. 391, 89–92 (2014). 64. Parker, J. L., Day Williams, M. J., Tomas, J. M., Stafford, G. P. Shaw, J. G. Identification of a putative glycosyltransferase responsible for the transfer of pseudaminic acid onto the polar flagellin of Aeromonas caviae Sch3N. Microbiologyopen 1, 149–160 (2012). 65. Kao, C. Y. Y., Sheu, B. S. S. Wu, J. J. J. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed. J. 39, 14–23 (2016). 66. Perepelov, A. V. et al. Structure and genetics of the O-antigen of Enterobacter cloacae G3054 containing di-N-acetylpseudaminic acid. Carbohydr. Res. 407, 59–62 (2015). 67. Thibault, P. et al. Identification of the Carbohydrate Moieties and Glycosylation Motifs in Campylobacter jejuni Flagellin. J. Biol. Chem. 276, 34862–34870 (2001). 68. Pillai, S., Netravali, I. A., Cariappa, A. Mattoo, H. Siglecs and Immune Regulation. Annu. Rev. Immunol. 30, 357–392 (2012). 69. Macauley, M. S., Crocker, P. R. Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014). 70. Stephenson, H. N. et al. Pseudaminic Acid on Campylobacter jejuni Flagella Modulates Dendritic Cell IL-10 Expression via Siglec-10 Receptor: A Novel Flagellin-Host Interaction. J. Infect. Dis. 210, 1487–1498 (2014). 71. Posch, G. et al. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J. Biol. Chem. 286, 38714–38724 (2011). 72. Sekot, G. et al. Potential of the Tannerella forsythia S-layer to Delay the Immune Response. J. Dent. Res. 90, 109–114 (2010). 73. Settem, R P, Honma, K, Nakajima, T, Phansopa, C, Roy, S, Stafford, G P Sharma, A. A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression. Mucosal Immunol. 6, 415–426 (2013). 74. Verma, A., Arora, S. K., Kuravi, S. K. Ramphal, R. Roles of Specific Amino Acids in the N Terminus of Pseudomonas aeruginosa Flagellin and of Flagellin Glycosylation in the Innate Immune Response. Infect. Immun. 73, 8237–8246 (2005). 75. Lu, T. K. Koeris, M. S. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 14, 524–531 (2011). 76. Alisky, J., Iczkowski, K., Rapoport, A. Troitsky, N. Bacteriophages show promise as antimicrobial agents. J. Infect. 36, 5–15 (1998). 77. Joerger, R. D. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82, 640–647 (2003). 78. Liu, J. et al. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol. 22, 185–191 (2004). 79. Sim, B. M. Q. et al. Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates. Genome Biol. 11, R89 (2010). 80. Gresnigt, M. S. et al. A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. PLOS Pathog. 10, e1003936 (2014). 81. Onderdonk, A. B., Kasper, D. L., Cisneros, R. L. Bartlett, J. G. The Capsular Polysaccharide of Bacteroides fragilis as a Virulence Factor: Comparison of the Pathogenic Potential of Encapsulated and Unencapsulated Strains. J. Infect. Dis. 136, 82–89 (1977). 82. Kim, J. O. Weiser, J. N. Association of Intrastrain Phase Variation in Quantity of Capsular Polysaccharide and Teichoic Acid with the Virulence of Streptococcus pneumoniae. J. Infect. Dis. 177, 368–377 (1998). 83. Denny, T. P. Baek, S. R. Genetic Evidence that Extracellular Polysaccharide ls a Virulence Factor. Mol. Plant-Microbe Interact. 4, 198–206 (1991). 84. Iwashkiw, J. A. et al. Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation. PLOS Pathog. 8, e1002758 (2012). 85. Lithgow, K. V et al. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol. Microbiol. 92, 116–137 (2014). 86. Luettig, B., Steinmüller, C., Gifford, G. E., Wagner, H. Lohmann-Matthes, M. L. Macrophage Activation by the Polysaccharide Arabinogalactan Isolated From Plant Cell Cultures of Echinacea purpurea. JNCI J. Natl. Cancer Inst. 81, 669–675 (1989). 87. Stimpel, M., Proksch, A., Wagner, H. Lohmann-Matthes, M. L. Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea. Infect. Immun. 46, 845–849 (1984). 88. Lee, K. Y. et al. Macrophage activation by polysaccharide fraction isolated from Salicornia herbacea. J. Ethnopharmacol. 103, 372–378 (2006). 89. Yoshizawa, Y., Enomoto, A., Todoh, H., Ametani, A. Kaminogawa, S. Activation of Murine Macrophages by Polysaccharide Fractions from Marine Algae (Porphyra yezoensis). Biosci. Biotechnol. Biochem. 57, 1862–1866 (1993). 90. Oliveira, H. et al. A Tailspike with Exopolysaccharide Depolymerase Activity from a New Providencia stuartii Phage Makes Multidrug-Resistant Bacteria Susceptible to Serum-Mediated Killing. Appl. Environ. Microbiol. 86, e00073-20 (2020). 91. Squeglia, F. et al. Structural and Functional Studies of a Klebsiella Phage Capsule Depolymerase Tailspike: Mechanistic Insights into Capsular Degradation. Structure 28, 613-624 (2020). 92. Olszak, T. et al. The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence. Sci. Rep. 7, 16302 (2017). 93. Majkowska-Skrobek, G. et al. Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy. Viruses 8, 324 (2016). 94. Barbirz, S. et al. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol. Microbiol. 69, 303–316 (2008). 95. Müller, J. J. et al. An Intersubunit Active Site between Supercoiled Parallel β Helices in the Trimeric Tailspike Endorhamnosidase of Shigella flexneri Phage Sf6. Structure 16, 766–775 (2008). 96. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994). 97. Casjens, S. R. Thuman-Commike, P. A. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411, 393–415 (2011). 98. Lee, I. M. et al. Structural basis for fragmenting the exopolysaccharide of Acinetobacter baumannii by bacteriophage ΦAB6 tailspike protein. Sci. Rep. 7, 42711 (2017). 99. Knirel, Y. A. et al. Mechanisms of Acinetobacter baumannii Capsular Polysaccharide Cleavage by Phage Depolymerases. Biochem. 85, 567–574 (2020). 100. Fenoll, A., Jado, I., Vicioso, D. Casal, J. Dot blot assay for the serotyping of pneumococci. J. Clin. Microbiol. 35, 764–766 (1997). 101. Porath, J. Flodin, P. Gel filtration: A method for desalting and group separation. Chromatographia 23, 365–369 (1987). 102. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. t Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). 103. Skalli, O, Ropraz, P, Trzeciak, A, Benzonana, G, Gillessen, D, Gabbiani, G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103, 2787–2796 (1986). 104. Maini, R. N. et al. Monoclonal anti-TNFα Antibody as a Probe of Pathogenesis and Therapy of Rheumatoid Disease. Immunol. Rev. 144, 195–223 (1995). 105. Sun, X. L., Zhao, X. L., Tang, J., Zhou, J., Chu, F S. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. Int. J. Food Microbiol. 99, 185–194 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55583 | - |
| dc.description.abstract | Pse單醣屬於壬二酸家族的一種醣類,它以參與細菌的致病過程以及抑制宿主免疫反應而聞名。在最近的研究中,鮑氏不動桿菌作為人類致病菌之一,發現其胞外多醣上有Pse單醣的存在,它通常會引起院內感染並使鮑氏不動桿菌產生多重抗藥性,從而對全球健康構成威脅。在臨床研究中,Pse單醣可能扮演與生物膜形成以及抗生素治療相關的致病因子,相對於沒有Pse單醣的鮑氏不動桿菌,帶有Pse單醣的鮑氏不動桿菌會造成病患感染後較高的死亡率。因此,我們迫切需要發展出能夠檢測細菌表面上Pse單醣的抗體探針。根據先前研究得知,在鮑氏不動桿菌菌株54149的胞外多醣上發現了Pse單醣,結果證實Pse對鮑氏不動桿菌菌株54149衍生的胞外多醣結合物誘導所產生的高效血清有顯著抗原性,因此可作為探針候選物。在此研究中,我們從高效血清中純化出抗體,再藉由帶NHS基團的連接子與螢光染劑Dylight-488結合製成我們所需的Pse單醣探針。實驗後發現,鮑氏不動桿菌菌株54149的熒光強度與其細菌數呈線性關係,此結果顯示了該Pse單醣探針的可行性。此外,我們利用此Pse探針成功偵測除了鮑氏不動桿菌以外且帶有Pse單醣的致病菌陰溝腸桿菌。與傳統偵測方法相比,目前發展出的跨物種Pse抗體探針不僅具有輕微技術上限制的經濟效益,而且具有更廣泛的用途,在未來的臨床早期診斷上,有利於病患及時接受抗生素治療。 | zh_TW |
| dc.description.abstract | Pseudaminic acid (Pse) belongs to the family of sugars called nonulosonic acids and has known for participating in pathogenic process of bacteria, including suppression of host immune response. Currently, Pse has been found on the exopolysaccharide (EPS) of Acinetobacter baumannii that commonly caused nosocomial infection with multiple antibiotic resistance, resulting in global health threat. In the clinical study, Pse was possibly acting as a virulence factor associated with biofilm formation and antibiotic therapy. Patients infected by Ab with Pse might have higher mortality than Ab without Pse. Therefore, the requirement of a probe that can detect the Pse on the bacterial surface is urgent. In our previous study, Pse was found on the EPS of A. baumannii strain 54149 (Ab-54149) and displayed the significant antigenicity toward Ab-54149 EPS derived glycoconjugate boosted serum as a candidate of probe. Here, we purified the antibody from boosted serum and then was conjugated with fluorophore Dylight-488 through an NHS-based linker for detection. Upon Ab-54149 treatment, the linear relationship between the fluorescence intensity and the OD value indicated the feasibility of the strategy. Moreover, this probe enables to detect the surface Pse on not only other A. baumannii clinical strains but also Enterobacter cloacae. This Pse probe is cost-effective with slight technical restriction, leading to wide usage compared to the conventional method. These efforts benefit the early diagnosis in the clinic that patients might be treated by antibiotics timely. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:10:48Z (GMT). No. of bitstreams: 1 U0001-2907202017424500.pdf: 3353819 bytes, checksum: 9b7e9899483478de256f535f37f8099f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT I 中文摘要 II Abstract III Contents IV List of figures VII List of tables IX 1. Introduction 1 1.1. Acinetobacter baumannii 1 1.2. Pathogenesis and virulence factors 2 1.3. Antimicrobial resistance and therapy 3 1.4. The pseudaminic acid (Pse) and immune response 4 1.5. The bacteriophage tailspike protein ΦAB6 TSP 6 1.6. Pseudaminic acid (Pse) in A. baumannii strain 7 1.7. The correlation between glycovaccines and antibody probe 9 2. Materials and methods 10 2.1. Bacterial strains 10 2.2. Multilocus sequence typing (MLST) for Acinetobacter baumannii 11 2.3. Dot blot assay for Acinetobacter baumannii clinical strains 11 2.4. Polyclonal antibody for A. baumannii 54149 digested EPS 12 2.5. Preparation of Pse probe 12 2.6. Pse probe detection 14 2.7. Extraction of clinical A. baumannii exopolysaccharide (EPS) 14 2.8. Size exclusion chromatography (HW-65F) analysis 15 2.9. Determination of pseudaminic acid (Pse) population on clinical Ab EPS by NMR 15 2.10. Pse release 15 2.11. Mass spectrometry analysis 16 2.12. Analysis of EPS composition by GC-MS 16 3. Result 17 3.1. Demonstration of Pse probe detection for standard A. baumannii strain 54149 (Ab-54149) strain 17 3.2. Verification of binding between Pse and probe by ΦAB6 TSP competition 19 3.3. Comparison with non-Pse Ab strain and Pse strain by Pse probe detection 20 3.4. Dot blot assay for clinical A. baumannii strain 21 3.5. Pse probe detection for clinical A. baumannii strain 25 3.6. Determination of pseudaminic acid (Pse) population on clinical Ab strains by NMR and ESI-MS 28 3.7. Pse probe detection for other pathogen included Enterobacter cloacae 36 4. Discussion 38 5. References 40 6. Appendix 54 6.1. The known structure of Ab-54149 EPS with Pse 54 6.2. The STD NMR spectrum of binding between Pse and ΦAB6 TSP 55 | |
| dc.language.iso | en | |
| dc.subject | 胞外多醣 | zh_TW |
| dc.subject | 臨床診斷 | zh_TW |
| dc.subject | 陰溝腸桿菌 | zh_TW |
| dc.subject | 抗體探針 | zh_TW |
| dc.subject | Pse單醣 | zh_TW |
| dc.subject | 鮑氏不動桿菌 | zh_TW |
| dc.subject | clinical diagnosis | en |
| dc.subject | antibody probe | en |
| dc.subject | Pseudaminic acid (Pse) | en |
| dc.subject | exopolysaccharide | en |
| dc.subject | Acinetobacter baumannii | en |
| dc.subject | Enterobacter cloacae | en |
| dc.title | 開發偵測不同致病菌上的pseudaminic acid的抗體探針 | zh_TW |
| dc.title | Development of antibody probe for detecting pseudaminic acid on different pathogenic bacteria | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 花國鋒(Kuo-Feng Hua),梁博煌(Po-Huang Liang) | |
| dc.subject.keyword | 鮑氏不動桿菌,胞外多醣,Pse單醣,抗體探針,陰溝腸桿菌,臨床診斷, | zh_TW |
| dc.subject.keyword | Acinetobacter baumannii,exopolysaccharide,Pseudaminic acid (Pse),antibody probe,Enterobacter cloacae,clinical diagnosis, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU202002049 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202017424500.pdf 未授權公開取用 | 3.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
