請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李伯訓(Bor-Shuinn Lee) | |
| dc.contributor.author | Wei-Chi Lan | en |
| dc.contributor.author | 藍偉齊 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:10:20Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-21 | |
| dc.identifier.citation | 1. Lynch, R.J., R. Navada, and R. Walia, Low-levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes. Int Dent J, 2004. 54(5 Suppl 1): p. 304-9.
2. Ekstrand J, F.O., Silverstone LM, Silverstone LM (eds) Fluoride in dentistry. 2nd ed, 1996. 3. Featherstone, J.D., Delivery challenges for fluoride, chlorhexidine and xylitol. BMC Oral Health, 2006. 6 Suppl 1: p. S8. 4. Takagi, S., H. Liao, and L.C. Chow, Effect of tooth-bound fluoride on enamel demineralization/ remineralization in vitro. Caries Res, 2000. 34(4): p. 281-8. 5. Harris, N.O. and F. Garcia-Godoy, Primary preventive dentistry.6th ed, 2004. 6. Kim, H.E., H.K. Kwon, and B.I. Kim, Application of fluoride iontophoresis to improve remineralization. J Oral Rehabil, 2009. 36(10): p. 770-5. 7. Featherstone, J.D., Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol, 1999. 27(1): p. 31-40. 8. Hicks, J., F. Garcia-Godoy, and C. Flaitz, Biological factors in dental caries: role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). J Clin Pediatr Dent, 2004. 28(3): p. 203-14. 9. LeGeros, R.Z., Calcium phosphates in oral biology and medicine. Monogr Oral Sci, 1991. 15: p. 1-201. 10. LeGeros, R.Z., et al., Two types of carbonate substitution in the apatite structure. Experientia, 1969. 25(1): p. 5-7. 11. Featherstone, J.D., D.G. Nelson, and J.D. McLean, An electron microscope study of modifications to defect regions in dental enamel and synthetic apatites. Caries Res, 1981. 15(4): p. 278-88. 12. Nelson, D.G. and J.D. McLean, High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products. Calcif Tissue Int, 1984. 36(2): p. 219-32. 13. Featherstone, J., P. Goodman, and J. MacLean, Electron microscope study of defect zones in dental enamel. J Ultrastruc Res, 1979: p. 67: 117-123. 14. Oliveira, M. and H.S. Mansur, Synthetic tooth enamel: SEM characterization of a fluoride hydroxyapatite coating for dentistry applications. Materials Research, 2007. 10: p. 115-118. 15. Kidd, E.A. and O. Fejerskov, What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res, 2004. 83 Spec No C: p. C35-8. 16. Featherstone, J.D., The continuum of dental caries--evidence for a dynamic disease process. J Dent Res, 2004. 83 Spec No C: p. C39-42. 17. Marsh, P.M., Oral Microbiology. Vol. 4. 1999. 18. Miller, W.D., Microorganism of the human teeth. 1890. 19. Orland, F.J., Formal discussion. Vol. 43. 1964. 20. Fitzgerald, R.J., Microbial factors in caries. Bull N Y Acad Med, 1952. 28(7): p. 475-7. 21. McDonald, R.E. and D.R. Avery, Dentistry for the child and adolescent. Vol. 5. 1987. 219-263. 22. Featherstone, J.D., The science and practice of caries prevention. J Am Dent Assoc, 2000. 131(7): p. 887-99. 23. Applebaum, J., The radiopaque surface layer of enamel and caries. Vol. 19. 1940. 24. Besic, F.C., Carieslike enamel changes by chemical means. Vol. 32. 1953. 25. Coolidge, T.B., F.C. Besic, and M.H. Jacobs, A microscopic comparison of clinically and artificially produced changes in enamel. Oral Surg Oral Med Oral Pathol, 1955. 8(11): p. 1204-10. 26. Featherstone, J.D., Dental caries: a dynamic disease process. Aust Dent J, 2008. 53(3): p. 286-91. 27. Selwitz, R.I. and N.B. Pitts, Dental caries. Vol. 369. 2007. 28. Twetman, S., et al., Caries-preventive effect of fluoride toothpaste: a systematic review. Acta Odontol Scand, 2003. 61(6): p. 347-55. 29. Clarkson, J.E., R.P. Ellwood, and R.E. Chandler, A comprehensive summary of fluoride dentifrice caries clinical trials. Am J Dent, 1993. 6 Spec No: p. S59-106. 30. Ammari, A.B., A. Bloch-Zupan, and P.F. Ashley, Systematic review of studies comparing the anti-caries efficacy of children's toothpaste containing 600 ppm of fluoride or less with high fluoride toothpastes of 1,000 ppm or above. Caries Res, 2003. 37(2): p. 85-92. 31. Holt, R.D. and J.J. Murray, Developments in fluoride toothpastes--an overview. Community Dent Health, 1997. 14(1): p. 4-10. 32. Seppa, L., S. Salmenkivi, and H. Hausen, Salivary fluoride concentration in adults after different fluoride procedures. Acta Odontol Scand, 1997. 55(2): p. 84-7. 33. Zero, D.T., et al., Comparison of fluoride concentrations in unstimulated whole saliva following the use of a fluoride dentifrice and a fluoride rinse. J Dent Res, 1988. 67(10): p. 1257-62. 34. Zero, D.T., et al., Fluoride concentrations in plaque, whole saliva, and ductal saliva after application of home-use topical fluorides [published eerratum appears in J Dent Res 1993 Jan;72(1):87]. J Dent Res, 1992. 71(11): p. 1768-75. 35. Songsiripradubboon, S., et al., Sodium fluoride mouthrinse used twice daily increased incipient caries lesion remineralization in an in situ model. Journal of Dentistry, 2014. 42(3): p. 271-278. 36. Dale, P. and V. Powell, Inhibition of experimental dental caries in the rat by iodoacetic acid. Dental Research, 1943. 22(1): p. 33 37. Rae, J.J. and C.T. Clegg, The effect of sodium fluoride on the solubility of calcium phosphate, tooth enamel and whole teeth in lactic acid. J Dent Res, 1945. 24: p. 235-7. 38. Gerould, C.H., Electron microscope study of the mechanism of fluorine deposition in teeth. J Dent Res, 1945. 24: p. 223-33. 39. Mckay, F.S. and G.V. Black, An investigation of mottled teeth. Vol. 58. 1916. 40. Peterson, J., Solving the mystery of the Colorado Brown Stain. J Hist Dent, 1997. 45(2): p. 57-61. 41. Ast, D.B., S.B. Finn, and M.I. Caffrey, The Newburgh-Kingston caries Fluorine study; dental findings after three years of water fluoridation. Am J Public Health Nations Health, 1950. 40(6): p. 716-24. 42. Dean, H.T., et al., Studies on mass control of dental caries through fluoridation of the public water supply. Public Health Rep, 1950. 65(43): p. 1403-8. 43. Harrison, P.T.C., Fluoride in water: A UK perspective. Journal of Fluorine Chemistry, 2005. 126(11–12): p. 1448-1456. 44. Cate, J.M. and J. Arends, Remineralization of artificial enamel lesions in vitro. Caries Res, 1977. 11(5): p. 277-86. 45. Margolis, H.C., E.C. Moreno, and B.J. Murphy, Effect of low levels of fluoride in solution on enamel demineralization in vitro. J Dent Res, 1986. 65(1): p. 23-9. 46. Moreno, E.C., M. Kresak, and R.T. Zahradnik, Fluoridated Hydroxyapatite Solubility and Caries Formation. Nature, 1974. 247(5435): p. 64-65. 47. Ole, F. and K. Edwina, Dental caries: the disease and its clinical management. 2003. 48. Rolla, G. and E. Saxegaard, Critical evaluation of the composition and use of topical fluorides, with emphasis on the role of calcium fluoride in caries inhibition. J Dent Res, 1990. 69 Spec No: p. 780-5; discussion 820-3. 49. Geiger, S.B. and S. Weiner, Fluoridated carbonatoapatite in the intermediate layer between glass ionomer and dentin. Dent Mater, 1993. 9(1): p. 33-6. 50. Robinson, C., J. Kirkham, and J.A. Weatherell, Fluoride in teeth and bone. 1996. 51. Ten Cate, J.M. and J.D. Featherstone, Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med, 1991. 2(3): p. 283-96. 52. Nelson, D.G., et al., Effect of carbonate and fluoride on the dissolution behaviour of synthetic apatites. Caries Res, 1983. 17(3): p. 200-11. 53. Featherstone, J.D., et al., Dependence of in vitro demineralization of apatite and remineralization of dental enamel on fluoride concentration. J Dent Res, 1990. 69 Spec No: p. 620-5; discussion 634-6. 54. Tatevossian, A., Fluoride in dental plaque and its effects. J Dent Res, 1990. 69 Spec No: p. 645-52; discussion 682-3. 55. Spets-Happonen, S., et al., Accumulation of strontium and fluoride in approximal dental plaque and changes in plaque microflora after rinsing with chlorhexidine-fluoride-strontium solution. Oral Dis, 1998. 4(2): p. 114-9. 56. Belli, W.A., D.H. Buckley, and R.E. Marquis, Weak acid effects and fluoride inhibition of glycolysis by Streptococcus mutans GS-5. Can J Microbiol, 1995. 41(9): p. 785-91. 57. Hamilton, I.R., Biochemical effects of fluoride on oral bacteria. J Dent Res, 1990. 69 Spec No: p. 660-7; discussion 682-3. 58. Kuusela, S., et al., Oral hygiene habits of 11-year-old schoolchildren in 22 European countries and Canada in 1993/1994. J Dent Res, 1997. 76(9): p. 1602-9. 59. Beltran-Aguilar, E.D., J.W. Goldstein, and S.A. Lockwood, Fluoride varnishes. A review of their clinical use, cariostatic mechanism, efficacy and safety. J Am Dent Assoc, 2000. 131(5): p. 589-96. 60. Clark, D.C., A review on fluoride varnishes: an alternative topical fluoride treatment. Community Dent Oral Epidemiol, 1982. 10(3): p. 117-23. 61. Petersson, L.G., Fluoride mouthrinses and fluoride varnishes. Caries Res, 1993. 27 Suppl 1: p. 35-42. 62. Siemon, W.H., A new approach in solving the problem of hypersensitivity and postoperative distress in dentin and cementum. J Conn State Dent Assoc, 1960. 34: p. 5. 63. Manning, M.W., new approach to desensitization of cervical dentin. 1961. 37: p. 731-736. 64. Gangarosa, L.P. and N.H. Park, Practical considerations in iontophoresis of fluoride for desensitizing dentin. J Prosthet Dent, 1978. 39(2): p. 173-8. 65. Minkov, B., et al., The effectiveness of sodium fluoride treatment with and without iontophoresis on the reduction of hypersensitive dentin. J Periodontol, 1975. 46(4): p. 246-9. 66. Kern, D.A., et al., Effectiveness of sodium fluoride on tooth hypersensitivity with and without iontophoresis. J Periodontol, 1989. 60(7): p. 386-9. 67. Singal, P., R. Gupta, and N. Pandit, 2% sodium fluoride-iontophoresis compared to a commercially available desensitizing agent. J Periodontol, 2005. 76(3): p. 351-7. 68. Walton, R.E., et al., Effects on pulp and dentin of iontophoresis of sodium fluoride on exposed roots in dogs. Oral Surg Oral Med Oral Pathol, 1979. 48(6): p. 545-57. 69. Gangarosa, L.P., N.H. Park, and G. King, Iontophoresis of lidocaine into frog sciatic nerve fibers. Life Sci, 1977. 21(6): p. 885-90. 70. Lefkowitz, W., Pulp response to ionization. The Journal of Prosthetic Dentistry, 1962. 12(5): p. 966-976. 71. Sage, H.B., Iontophoretic drug delivery. Encyclopedia of Pharmaceutical Technology. Vol. 8. New York. 72. Dixit, N., et al., Iontophoresis - an approach for controlled drug delivery: a review. Curr Drug Deliv, 2007. 4(1): p. 1-10. 73. Ree, J.S., The prevalence of dentine hypersensitivity in general dental practice in the UK. Clinical Periodontology, 2000. 27: p. 860-865. 74. Fischer, C., R.G. Fischer, and A. Wennberg, Prevalence and distribution of cervical dentine hypersensitivity in a population in Rio de Janeiro, Brazil. J Dent, 1992. 20(5): p. 272-6. 75. Jensen, A.L., Hypersensitivity controlled by iontophoresis: double blind clinical investigation. J Am Dent Assoc, 1964. 68: p. 216-225. 76. Brannstrom, M., a hydrodynamic mechanism in the transmission of pain producing stimuli through the dentine. 1963. 77. Harris, N.O. and F. Garcia-Godoy, Primary preventive dentistry. Vol. 6. 2004. 78. Gangarosa, L.P., Sr., Iontophoretic application of fluoride by tray techniques for desensitization of multiple teeth. J Am Dent Assoc, 1981. 102(1): p. 50-2. 79. Simone, J.L., et al., Iontophoresis: an alternative in the treatment of dental caries? Braz Dent J, 1995. 6(2): p. 123-9. 80. Brown, M.B., et al., Transdermal drug delivery systems: skin perturbation devices. Methods Mol Biol, 2008. 437: p. 119-39. 81. Kalia, Y.N., et al., Iontophoretic drug delivery. Vol. 56. 2004. 616-658. 82. Cullander, C. and R.H. Guy, Sites of iontophoretic current flow into the skin: identification and characterization with the vibrating probe electrode. J Invest Dermatol, 1991. 97(1): p. 55-64. 83. Burnette, R.R. and B. Ongpipattanakul, Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci, 1987. 76(10): p. 765-73. 84. Kushla, G.P. and J.L. Zatz, Influence of pH on lidocaine penetration through human and hairless mouse skin in vitro. International Journal of Pharmaceutics, 1991. 71(3): p. 167-173. 85. Semalty, A., et al., Iontophoretic drug delivery system: a review. Technol Health Care, 2007. 15(4): p. 237-45. 86. Behl, C.R., et al., Iontophoretic drug delivery: effects of physicochemical factors on the skin uptake of nonpeptide drugs. J Pharm Sci, 1989. 78(5): p. 355-60. 87. Eggins, B.R., Chemical Sensors and Biosensors. 2002. 27-38,154-160. 88. Gosser, D.K., Cyclic Voltammetry; Simulation and Analysis of Reaction Mechanisms. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1994. 24(7): p. 1237-1238. 89. Wang, C.M. and H.L. Li, Electroanalysis. Vol. 10. 1998. 90. Ali, A.M.M., et al., Electroanalysis. Vol. 12. 2000. 91. Sadana, R.S., Determination of arsenic in the presence of copper by differential pulse cathodic stripping voltammetry at a hanging mercury drop electrode. Analytical Chemistry, 1983. 55(2): p. 304-307. 92. MacCrehan, W.A., Differential pulse detection in liquid chromatography and its application to the measurement of organometal cations. Analytical Chemistry, 1981. 53(1): p. 74-77. 93. Wilson, S.A. and E.S. Yeung, Laser-based simultaneous absorbance, fluorescence, and refractive-index detector for microcolumn liquid chromatography. Analytical Chemistry, 1985. 57(13): p. 2611-2614. 94. ten Cate, J.M., R.A. Exterkate, and M.J. Buijs, The relative efficacy of fluoride toothpastes assessed with pH cycling. Caries Res, 2006. 40(2): p. 136-41. 95. Queiroz, C.S., et al., pH-cycling models to evaluate the effect of low fluoride dentifrice on enamel de- and remineralization. Brazilian Dental Journal, 2008. 19: p. 21-27. 96. Ten Cate, J.M. and P.P. Duijsters, Alternating demineralization and remineralization of artificial enamel lesions. Caries Res, 1982. 16(3): p. 201-10. 97. White, D.J., The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res, 1995. 9(3): p. 175-93; discussion 194-7. 98. Zero, D.T., In situ caries models. Vol. 9. 1997. 99. Douglas, A.S., Fundamentals of Analytical Chemistry 2004. 8: p. 490-492. 100. Landis, W.J. and J.R. Martin, X‐ray photoelectron spectroscopy applied to gold‐decorated mineral standards of biological interest. Journal of Vacuum Science & Technology A, 1984. 2(2): p. 1108-1111. 101. Layrolle, P.L.A., Synthesis in pure ethanol and characterization of nanosized calcium phosphate fluoroapatite. Chemistry of Materials, 1996. 8: p. 134-144. 102. Stranick, M.A. and M.J. Root, Influence of strontium on monofluorophosphate uptake by hydroxyapatite XPS characterization of the hydroxyapatite surface. Colloids and Surfaces, 1991. 55(0): p. 137-147. 103. Gu, Y.W., et al., Biomimetic deposition of apatite coating on surface-modified NiTi alloy. Biomaterials, 2005. 26(34): p. 6916-23. 104. Chusuei, C.C., et al., Calcium Phosphate Phase Identification Using XPS and Time-of-Flight Cluster SIMS. Anal Chem, 1999. 71(1): p. 149-53. 105. Hanawa, T. and M. Ota, Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials, 1991. 12(8): p. 767-774. 106. Castle, J.E., Practical surface analysis by Auger and X-ray photoelectron spectroscopy. D. Briggs and M. P. Seah (Editors). John Wiley and Sons Ltd, Chichester, 1983, 533 pp., £44.50. Surface and Interface Analysis, 1984. 6(6): p. 302-302. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55575 | - |
| dc.description.abstract | 氟離子電導入法 (fluoride iontophoresis, FI),早先已有學者Siemon和Manning提出NaF的離子電導入法,利用電壓推動氟離子深入牙本質小管,以達成CaF2的沉澱,減少牙本質小管內的液體流動,進而達到降低牙本質敏感的效果。本實驗即以電化學為概念的離子電導入法,希望將氟離子導入至牙齒較深處的位置,延長氟化物結構存在於牙齒的時間。良好的氟離子導入裝置必須是能在最短的時間內,達成最有效的氟化合物的形成且能停留在牙齒的時間較久。目前臨床所使用的FI device (Pyo-cure, Narcohm, Japan)的電化學條件為計時安培法(Chronoamperometry,CA),且氟離子導入的深度卻很有限,進而會影響其使用後的成效,本實驗想以不同微分脈衝伏安法(Differential-Pulse Voltammetry, DPV)的電化學條件與市售裝置來做比較。
由X射線電子能譜儀 (XPS)分析牙釉質縱切面之F和Ca,計算出F/Ca+F ratio。結果以DPV(OCV0.005S-10V0.02S)、DPV(OCV0.005s-10V0.005s)及DPV(OCV0.02S-10V0.005S) 之數值最高。並且由XPS分析在Ca 2p3/2及F 1s之spectra比較圖可以推測經過電化學處理後之牙釉質縱切點A、B、C、D其主要沉積物的結構推測是fluorapatite (FAP)。配合pH Cycling及離子層析儀 (IC)分析鈣離子流失和吸收量及牙釉質抗蛀牙的能力,發現F/Ca+F ratio值愈高的組別其可抵抗牙釉質去礦化、增強再礦化。 綜合實驗所有的結果顯示,使用DPV電化學條件,在抵抗牙釉質去礦化、增強再礦化方面的能力是比較好的,在預防齲齒上應具備良好的應用價值。 | zh_TW |
| dc.description.abstract | The experiment of fluoride iontophoresis has been suggested by Siemon and Manning earlier. They adopted NaF iontophoresis to import fluorides into dentinal tubules by electric voltage. The fluid movement in dentinal tubules were reduced by precipitation of CaF2 in tubules. Therefore, dentin hypersensitivity will be decreased. The experiment used iontophoresis based on the concept of electrochemistry to import fluorides into the inner part of the teeth. The duration that fluorine compounds in the teeth is expected to be prolonged. A well-designed fluoride iontophoresis should produce fluorine compounds effectively and efficiently. The fluorine compounds should be able to stay in the teeth for a longer duration. The electrochemistry approach of current clinical FI device (Pyo-cure, Narcohm, Japan) is Chronoamperometry. Fluorides is imported to a limited degree, which affects the outcome of the experiment. In this experiment, we used differential-pulse voltammetry to increase the depth of fluorine compounds in a limited time. Thus, the decomposition of fluorine compounds in the oral environment is expected to be reduced.The experiment aims to compare differential-pulse voltammetry with chronoamperometry, which is adopted by current clinical devices.
The ratio of F/Ca+F was calculated through analyzing the F-and Ca2+ on the longitudinal section of enamel with X-ray Photoelectron Spectroscopy (XPS). The highest values were DPV(OCV0.005S-10V0.02S), DPV(OCV0.005S-10V0.005S), and DPV(OCV0.02S-10V0.005S). With the spectra of the XPS analysis of the Ca 2p3/2 and F 1s, we found that the main structure of the compound in enamel section A, B, C, and D is FAP. By analyzing the loss and uptake of Ca2+ with pH Cycling and IC, it was found that the groups with a higher F/Ca+F ratio demonstrated higher resistance against demineralization and enforcing remineralization. In conclusions, DPV is more effective in resisting the demineralization and enforcing the remineralization of enamel. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:10:20Z (GMT). No. of bitstreams: 1 ntu-103-R01450009-1.pdf: 2594114 bytes, checksum: 23cb111a1ee311974c9290ec72a35fc2 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 2 2.1 牙釉質 2 2.2 齲齒 4 2.2.1定義 4 2.2.2齲齒過程 4 2.2.3預防 5 2.3 氟化物 7 2.3.1氟化物的發展 7 2.3.2 氟化物的作用 8 2.4 傳統的塗氟 Conventional fluoride application (CFA) 11 2.5 Iontophoresis 11 2.5.1 發展進程 11 2.5.2 定義 12 2.5.3 裝置應用 13 2.6 電化學測定法 17 2.6.1 計時安培法(chronoamperometry,CA)[87] 17 2.6.2 循環伏安法(cyclic voltammetry, CV)[88] 18 2.6.3 差式脈波安培法(Differential Pulse Amperometry,DPA) 20 2.6.4 差式脈波伏安法(differential-pulse voltammetry, DPV)[93] 22 第三章 實驗材料與方法 24 3.1 實驗藥品 24 3.2 實驗器材 29 3.3 實驗流程圖 30 3.4 實驗方法 31 3.4.1牙齒樣品的製作 31 3.4.2 牙釉質表面酸蝕 (Artificial enamel lesion) 33 3.4.3 實驗中溶液的配製 34 3.4.4 pH Cycling 35 3.4.5 電化學反應 38 3.4.6 化學分析電子能譜儀(X-ray Photoelectron Spectroscopy,XPS) 41 3.4.7 離子層析儀實驗(Ion chromatography) 42 第四章 實驗結果與討論 43 4.1 各組別F/Ca+F ratio結果討論 43 4.1.1 不同initial voltage 43 4.1.2 不同pulse time 45 4.2 XPS分析結果 46 4.2.1 實驗條件: 46 4.2.2 F1s 46 4.2.3 Ca 2p3/2 47 4.2.4 O1s 47 4.3 XPS分析結果討論 48 4.3.1 F1s 48 4.3.2 Ca 2p3/2 49 4.3.3 O1s 50 4.4 Ion Chromatography結果與討論 52 第五章 結論 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 計時安培法 | zh_TW |
| dc.subject | 氟離子電導入法 | zh_TW |
| dc.subject | 微分脈衝伏安法 | zh_TW |
| dc.subject | pH Cycling | zh_TW |
| dc.subject | Fluoride iontophoresis | en |
| dc.subject | Chronoamperometry | en |
| dc.subject | Differential-pulse voltammetry | en |
| dc.subject | pH Cycling | en |
| dc.title | 比較計時安培法及微分脈衝伏安法對於氟離子進入牙釉質深度以及抗酸之研究 | zh_TW |
| dc.title | Fluoride iontophoresis on enamel using Chronoamperometry and Differential-Pulse Voltammetry against demineralization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張哲政(Che-Chen Chang),王大銘(Da-Ming Wang) | |
| dc.subject.keyword | 氟離子電導入法,計時安培法,微分脈衝伏安法,pH Cycling, | zh_TW |
| dc.subject.keyword | Fluoride iontophoresis,Chronoamperometry,Differential-pulse voltammetry,pH Cycling, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-21 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
