請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55561完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光超(Guang-Chao Chen) | |
| dc.contributor.author | Hsuan-Yu Weng | en |
| dc.contributor.author | 翁萱諭 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:09:31Z | - |
| dc.date.available | 2025-08-14 | |
| dc.date.copyright | 2020-08-26 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | Alers, S., Loffler, A. S., Wesselborg, S., Stork, B. (2011). Role of AMPK-mTOR Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks. Molecular and Cellular Biology, 32(1), 2-11. doi:10.1128/mcb.06159-11 Anfinsen, C. B. (1973). Principles that Govern the Folding of Protein Chains. Science, 181(4096), 223-230. doi:10.1126/science.181.4096.223 Badadani, M. (2012). Autophagy Mechanism, Regulation, Functions, and Disorders. ISRN Cell Biology, 2012, 1-11. doi:10.5402/2012/927064 Balachandran, R. S., Heighington, C. S., Starostina, N. G., Anderson, J. W., Owen, D. L., Vasudevan, S., Kipreos, E. T. (2016). The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage. Journal of Cell Biology, 215(2), 151-166. doi:10.1083/jcb.201601083 Bienko, M. (2005). Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis. Science, 310(5755), 1821-1824. doi:10.1126/science.1120615 Bigotti, M. G., Clarke, A. R. (2008). Chaperonins: The hunt for the Group II mechanism. Archives of Biochemistry and Biophysics, 474(2), 331-339. doi:10.1016/j.abb.2008.03.015 Buckley, D. L., Molle, I. V., Gareiss, P. C., Tae, H. S., Michel, J., Noblin, D. J., . . . Crews, C. M. (2012). Targeting the von Hippel–Lindau E3 Ubiquitin Ligase Using Small Molecules To Disrupt the VHL/HIF-1α Interaction. Journal of the American Chemical Society, 134(10), 4465-4468. doi:10.1021/ja209924v Chaugule, V., Walden, H. (2016). Specificity and disease in the ubiquitin system. Biochemical Society Transactions, 44(1), 212-227. doi:10.1042/bst20150209 Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G., . . . Ma’Ayan, A. (2013). Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14(1), 128. doi:10.1186/1471-2105-14-128 Chen, Y., Klionsky, D. J. (2010). The regulation of autophagy - unanswered questions. Journal of Cell Science, 124(2), 161-170. doi:10.1242/jcs.064576 Cheng, M. Y., Hartl, F., Norwich, A. L. (1990). The mitochondrial chaperonin hsp60 is required for its own assembly. Nature, 348(6300), 455-458. doi:10.1038/348455a0 Cuéllar, J., Ludlam, W. G., Tensmeyer, N. C., Aoba, T., Dhavale, M., Santiago, C., . . . Valpuesta, J. M. (2019). Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly. Nature Communications, 10(1). doi:10.1038/s41467-019-10781-1 Cong, Y., Schröder, G. F., Meyer, A. S., Jakana, J., Ma, B., Dougherty, M. T., . . . Chiu, W. (2011). Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. The EMBO Journal, 31(3), 720-730. doi:10.1038/emboj.2011.366 Costessi, A., Mahrour, N., Tijchon, E., Stunnenberg, R., Stoel, M. A., Jansen, P. W., . . . Stunnenberg, H. G. (2011). The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. TheEMBO Journal, 30(18), 3786-3798. doi:10.1038/emboj.2011.262 Dikic, I., Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology, 19(6), 349-364. doi:10.1038/s41580-018-0003-4 Ea, C., Deng, L., Xia, Z., Pineda, G., Chen, Z. J. (2006). Activation of IKK by TNFα Requires Site-Specific Ubiquitination of RIP1 and Polyubiquitin Binding by NEMO. Molecular Cell, 22(2), 245-257. doi:10.1016/j.molcel.2006.03.026 Elliott, K. L., Svanström, A., Spiess, M., Karlsson, R., Grantham, J. (2015). A novel function of the monomeric CCTε subunit connects the serum response factor pathway to chaperone-mediated actin folding. Molecular Biology of the Cell, 26(15), 2801-2809. doi:10.1091/mbc.e15-01-0048 Eskelinen, E. (2005). Maturation of Autophagic Vacuoles in Mammalian Cells. Autophagy, 1(1), 1-10. doi:10.4161/auto.1.1.1270 Feldman, D. E., Thulasiraman, V., Ferreyra, R. G., Frydman, J. (1999). Formation of the VHL–Elongin BC Tumor Suppressor Complex Is Mediated by the Chaperonin TRiC. Molecular Cell, 4(6), 1051-1061. doi:10.1016/s1097-2765(00)80233-6 Fenton, W. A., Horwich, A. L. (1997). GroEL-Mediated protein folding. Protein Science, 6(4), 743-760. doi:10.1002/pro.5560060401 Freeman, B. C., Morimoto, R. I. (1996). The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. The EMBO Journal, 15(12), 2969-2979. doi:10.1002/j.1460-2075.1996.tb00660.x Frydman, J. (2001). Folding of Newly Translated Proteins In Vivo: The Role of Molecular Chaperones. Annual Review of Biochemistry, 70(1), 603-647. doi:10.1146/annurev.biochem.70.1.603 Frydman, J., Nimmesgern, E., Erdjument-Bromage, H., Wall, J., Tempst, P., Hartl, F. (1992). Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. The EMBO Journal, 11(13), 4767-4778. doi:10.1002/j.1460-2075.1992.tb05582.x Frydman, J., Nimmesgern, E., Erdjument-Bromage, H., Wall, J., Tempst, P., Hartl, F. (1992). Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. The EMBO Journal, 11(13), 4767-4778. doi:10.1002/j.1460-2075.1992.tb05582.x Ganley, I. G., Lam, D. H., Wang, J., Ding, X., Chen, S., Jiang, X. (2009). ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy. Journal of Biological Chemistry, 284(18), 12297-12305. doi:10.1074/jbc.m900573200 Gao, Y., Thomas, J. O., Chow, R. L., Lee, G., Cowan, N. J. (1992). A cytoplasmic chaperonin that catalyzes β-actin folding. Cell, 69(6), 1043-1050. doi:10.1016/0092-8674(92)90622-j Glick, D., Barth, S., Macleod, K. F. (2010). Autophagy: Cellular and molecular mechanisms. The Journal of Pathology, 221(1), 3-12. doi:10.1002/path.2697 Gong, B., Radulovic, M., Figueiredo-Pereira, M. E., Cardozo, C. (2016). The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer’s Disease and Spinal Cord Injury. Frontiers in Molecular Neuroscience, 9. doi:10.3389/fnmol.2016.00004 Grantham, J., Brackley, K. I., Willison, K. R. (2006). Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells. Experimental Cell Research, 312(12), 2309-2324. doi:10.1016/j.yexcr.2006.03.028 Grantham, J., Ruddock, L. W., Roobol, A., Carden, M. J. (2002). Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones, 7(3), 235. doi:10.1379/1466-1268(2002)0072.0.co;2 Gutsche, I., Essen, L., Baumeister, W. (1999). Group II chaperonins: New TRiC(k)s and turns of a protein folding machine. Journal of Molecular Biology, 293(2), 295-312. doi:10.1006/jmbi.1999.3008 Hansen, M., Rubinsztein, D. C., Walker, D. W. (2018). Publisher Correction: Autophagy as a promoter of longevity: Insights from model organisms. Nature Reviews Molecular Cell Biology, 19(9), 611-611. doi:10.1038/s41580-018-0048-4 Hartl, F. U., Bracher, A., Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 324-332. doi:10.1038/nature10317 He, C., Klionsky, D. J. (2009). Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics, 43(1), 67-93. doi:10.1146/annurev-genet-102808-114910 He, C., Levine, B. (2010). The Beclin 1 interactome. Current Opinion in Cell Biology, 22(2), 140-149. doi:10.1016/j.ceb.2010.01.001 Horwich, A. L., Fenton, W. A., Chapman, E., Farr, G. W. (2007). Two Families of Chaperonin: Physiology and Mechanism. Annual Review of Cell and Developmental Biology, 23(1), 115-145. doi:10.1146/annurev.cellbio.23.090506.123555 Inguscio, V., Panzarini, E., Dini, L. (2012). Autophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy. Cells, 1(3), 464-491. doi:10.3390/cells1030464 Jackson, M., Hewitt, E. (2016). Cellular proteostasis: Degradation of misfolded proteins by lysosomes. Essays in Biochemistry, 60(2), 173-180. doi:10.1042/ebc20160005 Jr, W. G. (2008). The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nature Reviews Cancer, 8(11), 865-873. doi:10.1038/nrc2502 Kabeya, Y. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720-5728. doi:10.1093/emboj/19.21.5720 Kamura, T. (2004). VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Development, 18(24), 3055-3065. doi:10.1101/gad.1252404 Kanayama, A., Seth, R. B., Sun, L., Ea, C., Hong, M., Shaito, A., . . . Chen, Z. J. (2004). TAB2 and TAB3 Activate the NF-κB Pathway through Binding to Polyubiquitin Chains. Molecular Cell, 15(4), 535-548. doi:10.1016/j.molcel.2004.08.008 Kemphues, K. J., Wolf, N., Wood, W. B., Hirsh, D. (1986). Two loci required for cytoplasmic organization in early embryos of Caenorhabditis elegans. Developmental Biology, 113(2), 449-460. doi:10.1016/0012-1606(86)90180-6 Kim, A., Choi, K. (2019). TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signaling in Drosophila. Oncogene, 38(24), 4739-4754. doi:10.1038/s41388-019-0754-1 Kim, S., Willison, K. R., Horwich, A. L. (1994). Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends in Biochemical Sciences, 19(12), 543-548. doi:10.1016/0968-0004(94)90058-2 Kroemer, G., Mariño, G., Levine, B. (2010). Autophagy and the Integrated Stress Response. Molecular Cell, 40(2), 280-293. doi:10.1016/j.molcel.2010.09.023 Kubota, H., Hynes, G., Willison, K. (1995). The eighth Cct gene, Cctq, encoding the theta subunit of the cytosolic chaperonin containing TCP-1. Gene, 154(2), 231-236. doi:10.1016/0378-1119(94)00880-2 Leitner, A., Joachimiak, L., Bracher, A., Mönkemeyer, L., Walzthoeni, T., Chen, B., . . . Frydman, J. (2012). The Molecular Architecture of the Eukaryotic Chaperonin TRiC/CCT. Structure, 20(5), 814-825. doi:10.1016/j.str.2012.03.007 Lewis, V. A., Hynes, G. M., Zheng, D., Saibil, H., Willison, K. (1992). T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature, 358(6383), 249-252. doi:10.1038/358249a0 Li, W., Li, S., Zheng, H., Zhang, S., Xue, L. (2012). A broad expression profile of the GMR-GAL4 driver in Drosophila melanogaster. Genetics and Molecular Research, 11(3), 1997-2002. doi:10.4238/2012.august.6.4 Liu, J. (2004). CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Development, 131(15), 3513-3525. doi:10.1242/dev.01245 Llorca, O. (2000). Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. The EMBO Journal, 19(22), 5971-5979. doi:10.1093/emboj/19.22.5971 Llorca, O., Mccormack, E. A., Hynes, G., Grantham, J., Cordell, J., Carrascosa, J. L., . . . Valpuesta, J. M. (1999). Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature, 402(6762), 693-696. doi:10.1038/45294 Lőrincz, P., Mauvezin, C., Juhász, G. (2017). Exploring Autophagy in Drosophila. Cells, 6(3), 22. doi:10.3390/cells6030022 Lu, D., Ventura-Holman, T., Li, J., Mcmurray, R. W., Subauste, J. S., Maher, J. F. (2005). Abnormal Glucose Homeostasis and Pancreatic Islet Function in Mice with Inactivation of the Fem1b Gene. Molecular and Cellular Biology, 25(15), 6570-6577. doi:10.1128/mcb.25.15.6570-6577.2005 Maekawa, M., Tanigawa, K., Sakaue, T., Hiyoshi, H., Kubota, E., Joh, T., . . . Higashiyama, S. (2017). Cullin-3 and its adaptor protein ANKFY1 determine the surface level of integrin β1 in endothelial cells. Biology Open, 6(11), 1707-1719. doi:10.1242/bio.029579 Mahrour, N., Redwine, W. B., Florens, L., Swanson, S. K., Martin-Brown, S., Bradford, W. D., . . . Conaway, J. W. (2008). Characterization of Cullin-box Sequences That Direct Recruitment of Cul2-Rbx1 and Cul5-Rbx2 Modules to Elongin BC-based Ubiquitin Ligases. Journal of Biological Chemistry, 283(12), 8005-8013. doi:10.1074/jbc.m706987200 McKnight, N. C., Zhenyu, Y. (2013). Beclin 1, an Essential Component and Master Regulator of PI3K-III in Health and Disease. Current Pathobiology Reports, 1(4), 231-238. doi:10.1007/s40139-013-0028-5 Meyer, A. S., Gillespie, J. R., Walther, D., Millet, I. S., Doniach, S., Frydman, J. (2003). Closing the Folding Chamber of the Eukaryotic Chaperonin Requires the Transition State of ATP Hydrolysis. Cell, 113(3), 369-381. doi:10.1016/s0092-8674(03)00307-6 Mijaljica, D., Prescott, M., Devenish, R. J. (2011). Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy, 7(7), 673-682. doi:10.4161/auto.7.7.14733 Mizushima, N., Yoshimori, T., Levine, B. (2010). Methods in Mammalian Autophagy Research. Cell, 140(3), 313-326. doi:10.1016/j.cell.2010.01.028 Nandi, D., Tahiliani, P., Kumar, A., Chandu, D. (2006). The ubiquitin-proteasome system. Journal of Biosciences, 31(1), 137-155. doi:10.1007/bf02705243 Nguyen, H. C., Wang, W., Xiong, Y. (2017). Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction. Subcellular Biochemistry Macromolecular Protein Complexes, 323-347. doi:10.1007/978-3-319-46503-6_12 Nguyen, H., Yang, H., Fribourgh, J., Wolfe, L., Xiong, Y. (2015). Insights into Cullin-RING E3 Ubiquitin Ligase Recruitment: Structure of the VHL-EloBC-Cul2 Complex. Structure, 23(3), 441-449. doi:10.1016/j.str.2014.12.014 Ong, S., Hausenloy, D. J. (2012). Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacology Therapeutics, 136(1), 69-81. doi:10.1016/j.pharmthera.2012.07.005 Ou, H. (2013). Gene knockout by inducing P-element transposition in Drosophila. Genetics and Molecular Research, 12(3), 2852-2857. doi:10.4238/2013.january.4.20 Parzych, K. R., Klionsky, D. J. (2014). An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxidants Redox Signaling, 20(3), 460-473. doi:10.1089/ars.2013.5371 Pavel, M., Imarisio, S., Menzies, F. M., Jimenez-Sanchez, M., Siddiqi, F. H., Wu, X., . . . Rubinsztein, D. C. (2016). CCT complex restricts neuropathogenic protein aggregation via autophagy. Nature Communications, 7(1). doi:10.1038/ncomms13821 Prudêncio, P., Guilgur, L. (2015). FLP/FRT Induction of Mitotic Recombination in Drosophila Germline. Bio-Protocol, 5(9). doi:10.21769/bioprotoc.1458 Reissmann, S., Joachimiak, L., Chen, B., Meyer, A., Nguyen, A., Frydman, J. (2012). A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle. Cell Reports, 2(4), 866-877. doi:10.1016/j.celrep.2012.08.036 Reissmann, S., Parnot, C., Booth, C. R., Chiu, W., Frydman, J. (2007). Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nature Structural Molecular Biology, 14(5), 432-440. doi:10.1038/nsmb1236 Saibil, H. R. (2000). Macromolecular structure determination by cryo-electron microscopy. Acta Crystallographica Section D Biological Crystallography, 56(10), 1215-1222. doi:10.1107/s0907444900010787 Sakoh-Nakatogawa, M., Matoba, K., Asai, E., Kirisako, H., Ishii, J., Noda, N. N., . . . Ohsumi, Y. (2013). Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nature Structural Molecular Biology, 20(4), 433-439. doi:10.1038/nsmb.2527 Sonneville, R., Gönczy, P. (2004). Zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans. Development, 131(15), 3527-3543. doi:10.1242/dev.01244 Sotiropoulos, A., Gineitis, D., Copeland, J., Treisman, R. (1999). Signal-Regulated Activation of Serum Response Factor Is Mediated by Changes in Actin Dynamics. Cell, 98(2), 159-169. doi:10.1016/s0092-8674(00)81011-9 Spiess, C., Meyer, A. S., Reissmann, S., Frydman, J. (2004). Mechanism of the eukaryotic chaperonin: Protein folding in the chamber of secrets. Trends in Cell Biology, 14(11), 598-604. doi:10.1016/j.tcb.2004.09.015 Spiess, C., Miller, E. J., Mcclellan, A. J., Frydman, J. (2006). Identification of the TRiC/CCT Substrate Binding Sites Uncovers the Function of Subunit Diversity in Eukaryotic Chaperonins. Molecular Cell, 24(1), 25-37. doi:10.1016/j.molcel.2006.09.003 Starostina, N. G., Simpliciano, J. M., Mcguirk, M. A., Kipreos, E. T. (2010). CRL2LRR-1 Targets a CDK Inhibitor for Cell Cycle Control in C. elegans and Actin-Based Motility Regulation in Human Cells. Developmental Cell, 19(5), 753-764. doi:10.1016/j.devcel.2010.10.013 Trent, J. D., Nimmesgern, E., Wall, J. S., Hartl, F., Horwich, A. L. (1991). A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature, 354(6353), 490-493. doi:10.1038/354490a0 Vallin, J., Grantham, J. (2018). The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: Implications for cancer cell biology. Cell Stress and Chaperones, 24(1), 17-27. doi:10.1007/s12192-018-0949-3 Vasudevan, S., Starostina, N. G., Kipreos, E. T. (2007). The Caenorhabditis elegans cell‐cycle regulator ZYG‐11 defines a conserved family of CUL‐2 complex components. EMBO Reports, 8(3), 279-286. doi:10.1038/sj.embor.7400895 Vinh, D. B., Drubin, D. G. (1994). A yeast TCP-1-like protein is required for actin function in vivo. Proceedings of the National Academy of Sciences, 91(19), 9116-9120. doi:10.1073/pnas.91.19.9116 Wang, S., Xia, W., Qiu, M., Wang, X., Jiang, F., Yin, R., Xu, L. (2016). Atlas on substrate recognition subunits of CRL2 E3 ligases. Oncotarget, 7(29), 46707-46716. doi:10.18632/oncotarget.8732 Willardson, B. M., Cuellar, J., Ludlam, G., Tensmeyer, N. C., Aoba, T., Dhavale, M., . . . Franklin, S. (2020). Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly. The FASEB Journal, 34(S1), 1-1. doi:10.1096/fasebj.2020.34.s1.04354 Yaffe, M. B., Farr, G. W., Miklos, D., Horwich, A. L., Sternlicht, M. L., Sternlicht, H. (1992). TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, 358(6383), 245-248. doi:10.1038/358245a0 Yin, Z., Pascual, C., Klionsky, D. (2016). Autophagy: machinery and regulation. Microbial Cell, 3(12), 588-596. doi:10.15698/mic2016.12.546 Yuan, W., Lee, Y., Lin, S., Chang, L., Tan, Y., Hung, C., . . . Chen, R. (2014). K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Molecular Cell, 54(4), 586-600. doi:10.1016/j.molcel.2014.03.035 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55561 | - |
| dc.description.abstract | 細胞自噬(autophagy)是一個將受損的細胞物質以及一些長壽的蛋白經由溶酶體降解的一個過程。在細胞自噬進行的過程當中,細胞內的物質會受到雙層膜的構造包覆,此構造稱為細胞自噬體(autophagosome),最終與溶酶體結合並藉由水解酶降解包覆的物質並回收。果蠅的CG12084是哺乳動物ZYG11家族的同源物,其最主要的功能在於它會作為Cullin 2泛素連接酶複合物的受體辨認次單位,並且ZYG11在線蟲當中被發現會去調控細胞分裂以及胚胎發育。近期,我們的研究發現在果蠅幼蟲的脂肪組織藉由RNA干擾的方式敲落CG12084基因,會導致作為細胞自噬指標的Atg8a的量會有堆積的現象,然而,CG12084在細胞自噬當中所扮演的角色以及其調控的相關機制尚未釐清。 根據GST pull-down以及質譜的分析,我們發現許多與CG12084有相互作用的蛋白,其中一個為chaperonin containing TCP-1 (CCT, 也稱作TRiC),其在調節所有真核生物中的細胞骨架蛋白折疊中發揮功能。此外,CCT複合物也參與在細胞自噬的調節過程當中。深入研究發現,CCT複合物的許多次單位都會與CG12084有直接的相互作用,並且能夠在CG12084敲除的條件下,利用CCT2的過度表達去挽救Atg8a積累的現象。綜合以上,我們認為CG12084及CCT之間會互相影響,並且調控細胞自噬。我們將在進一步探討CG12084及CCT調控細胞自噬的分子機制。 | zh_TW |
| dc.description.abstract | Autophagy is a lysosomal degradation pathway by which damaged cellular materials and long-lived proteins are engulfed into double-membraned structures named autophagosomes, which finally fuse with lysosomes where their contents are degraded. Our recent study found that knockdown of CG12084 in Drosophila larval fat body caused the accumulation of Atg8a puncta, a marker of autophagosomes. CG12084 is a Drosophila homolog of mammalian ZYG11 family protein. It has been shown that ZYG11 family proteins function as conserved substrate recognition subunit of Cullin-2 ubiquitin-ligase complexes. ZYG11 regulates cell division and embryonic development in C. elegans. To explore the functions of CG12084 in autophagy, we identified several potential CG12084 interactive protein by GST pull-down assay and mass spectrometric analyses. One potential substrate is chaperonin containing TCP-1 (CCT, also known as TRiC), which functions in regulating cytoskeletal protein folding in all eukaryotes. In addition, CCT complex was also reported to regulate autophagy process. Our data showed that most of the components of the CCT complex interact with CG12084, and CCT2 overexpression rescues the Atg8a puncta accumulation in CG12084 knockdown conditions. Taken together, our study indicates that there is a correlation between CG12084 and CCT and may regulate autophagy machinery together. We will further investigate the molecular mechanisms underlie the regulation of autophagy between CG12084 and CCT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:09:31Z (GMT). No. of bitstreams: 1 U0001-2907202018385400.pdf: 9373378 bytes, checksum: 7839a50cc5ad32242ea96240fa383ba3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | CONTENTS I 中文摘要 IV Abstract VI Introduction 1 1. Overview of autophagy 1 2. The machinery of autophagy 2 (1) Induction and nucleation 2 (2) Elongation 3 (3) Degradation 4 3. Cullin-2 E3 Ubiquitin Ligase Complex 4 (1) Ubiquitin-proteasome system 4 (2) The composition of Cullin 2 5 (3) ZYG11 family 6 4. Chaperone 7 (1) TRiC (T-complex protein-1 ring complex, also known as CCT) 8 1.1 The composition of TRiC 8 1.2 The function of TRiC 9 1.3 The relation between TRiC and autophagy 9 Materials and Methods 11 Results 17 1. Knockdown of CG12084 causes Atg8a puncta accumulation in Drosophila larval fat body under fed condition 17 2. TRiC (T-complex protein-1 ring complex, also known as CCT) is a potential interacting partner of CG12084 18 3. Most of the TRiC (T-complex protein-1 ring complex, also known as CCT) subunits interact with CG12084 20 4. Knockdown of CCT causes Atg8a puncta formation in Drosophila fat bodies and reduces cell size 21 5. The genetic interactions between CCT and CG12084 22 6. Depletion of CG12084 does not affect CCT subunits protein level 23 7. Phenotypes of CG12084 and CCT knockdown flies 24 8. Generation of CG12084 mutant flies 25 Discussion 27 References 32 Figures 40 | |
| dc.language.iso | en | |
| dc.subject | ZYG11 | zh_TW |
| dc.subject | 伴侶蛋白 | zh_TW |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | Cullin-2 E3泛素連接酶複合物 | zh_TW |
| dc.subject | chaperonin | en |
| dc.subject | ZYG11 | en |
| dc.subject | Cullin-2 E3 Ubiquitin Ligase Complex | en |
| dc.subject | Autophagy | en |
| dc.title | 探討Cullin蛋白的連接器在細胞自噬之功能 | zh_TW |
| dc.title | Functional analysis of Cullin adaptor in autophagy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 汪宏達(Horng-Dar Wang),姚季光(Chi-Kuang Yao) | |
| dc.subject.keyword | 細胞自噬,伴侶蛋白,Cullin-2 E3泛素連接酶複合物,ZYG11, | zh_TW |
| dc.subject.keyword | Autophagy,chaperonin,Cullin-2 E3 Ubiquitin Ligase Complex,ZYG11, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202002052 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202018385400.pdf 未授權公開取用 | 9.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
