Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55546
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長平(Chan-Pin Lin)
dc.contributor.authorChu-Ning Huangen
dc.contributor.author黃筑寗zh_TW
dc.date.accessioned2021-06-16T04:08:37Z-
dc.date.available2019-09-05
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-22
dc.identifier.citationAbo-Elyousr, K.A.M., El-Hendawy, H.H., 2008. Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Protection 27, 1118-1124.
Almoneafy, A.A., Ojaghian, M.R., Xu, S.F., Ibrahim, M., Xie, G.L., Shi, Y., Tian, W.X., Li, B., 2013. Synergistic effect of acetyl salicylic acid and DL-Beta-aminobutyric acid on biocontrol efficacy of Bacillus strains against tomato bacterial wilt. Tropical Plant Pathology 38, 102-113.
Arias-Estevez, M., Lopez-Periago, E., Martinez-Carballo, E., Simal-Gandara, J., Mejuto, J.C., Garcia-Rio, L., 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture Ecosystems & Environment 123, 247-260.
Beneduzi, A., Ambrosini, A., Passaglia, L.M., 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 35, 1044-1051.
Beyeler, M., Keel, C., Michaux, P., Haas, D., 1999. Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiology Ecology 28, 225-233.
Bhattacharyya, P.N., Jha, D.K., 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology & Biotechnology 28, 1327-1350.
Borneman, J., Hartin, R.J., 2000. PCR primers that amplify fungal rRNA genes from environmental samples. Applied and Environmental Microbiology 66, 4356-4360.
Buddenhagen, I., Kelman, A., 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 2, 203-230.
Cameron, R.K., Paiva, N.L., Lamb, C.J., Dixon, R.A., 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiological and Molecular Plant Pathology 55, 121-130.
Chen, X.H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S., Borriss, R., 2009a. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Journal of Biotechnology 140, 38-44.
Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.I., Cheng, C.P., 2009b. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum 136, 324-335.
Chithrashree, Udayashankar, A.C., Nayaka, S.C., Reddy, M.S., Srinivas, C., 2011. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control 59, 114-122.
Choudhary, D.K., Johri, B.N., 2009. Interactions of Bacillus spp. and plants – With special reference to induced systemic resistance (ISR). Microbiological Research 164, 493-513.
Conrath, U., 2006. Systemic acquired resistance. Plant Signal Behav 1, 179-184.
Ding, C.Y., Shen, Q.R., Zhang, R.F., Chen, W., 2013. Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant and Soil 366, 453-466.
Dong, X.N., Mindrinos, M., Davis, K.R., Ausubel, F.M., 1991. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3, 61-72.
Eden, P.A., Schmidt, T.M., Blakemore, R.P., Pace, N.R., 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16s ribosomal-RNA-specific DNA. International Journal of Systematic Bacteriology 41, 324-325.
Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
Fredslund, L., Ekelund, F., Jacobsen, C.S., Johnsen, K., 2001. Development and application of a most-probable-number-PCR assay to quantify flagellate populations in soil samples. Applied and Environmental Microbiology 67, 1613-1618.
Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasaki, T., Fujie, M., Yamada, T., 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology 77, 4155-4162.
Ghareeb, H., Bozso, Z., Ott, P.G., Repenning, C., Stahl, F., Wydra, K., 2011. Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology 75, 83-89.
Glazebrook, J., 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43, 205-227.
Gonzalez-Sanchez, M.A., de Vicente, A., Perez-Garcia, A., Perez-Jimenez, R., Romero, D., Cazorla, F.M., 2013. Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biological Control 67, 94-100.
Guo, J.H., Qi, H.Y., Guo, Y.H., Ge, H.L., Gong, L.Y., Zhang, L.X., Sun, P.H., 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control 29, 66-72.
Haas, D., Defago, G., 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3, 307-319.
Hall, B.G., 2013. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution 30, 1229-1235.
Husen, E., 2003. Screening of soil bacteria for plant growth promoting activities in vitro. Indonesian Journal of Agricultural Secience 4, 27-31.
Jogaiah, S., Abdelrahman, M., Tran, L.S., Shin-Ichi, I., 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany 64, 3829-3842.
Kelman, A., 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44, 693-695.
Kim, D.S., Cook, R.J., Weller, D.M., 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87, 551-558.
Kulkarni, J.H., Patil, R.B., 1982. Production and utilization of extracellular slime by Pseudomonas solanacearum and its role on survival at different relative humidities. Acta Microbiologica Polonica 31, 159-165.
Kumar, D., Singh, K.P., 2006. Assessment of predacity and efficacy of Arthrobotrys dactyloides for biological control of root knot disease of tomato. Journal of Phytopathology 154, 1-5.
Kumar, S., Nei, M., Dudley, J., Tamura, K., 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in bioinformatics 9, 299-306.
Li, L.H., Ma, J.C., Li, Y., Wang, Z.Y., Gao, T.T., Wang, Q., 2012. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Protection 35, 29-35.
Li, S., Jochum, C.C., Yu, F., Zaleta-Rivera, K., Du, L., Harris, S.D., Yuen, G.Y., 2008. An antibiotic complex from Lysobacter enzymogenes strain C3: Antimicrobial activity and role in plant disease control. Phytopathology 98, 695-701.
Liu, S.Y., Muller, J.F.K., Neuburger, M., Schaffner, S., Zehnder, M., 1997. Crystallographic studies of (eta (3) -1,3- dimethylallyl) (2-[2 '- (diphenylphosphino) phenyl] oxazoline- P,N) palladium(II) hexafluorophosphates complexes complemented by H-1 NMR investigations. Journal of Organometallic Chemistry 549, 283-293.
Lugtenberg, B., Kamilova, F., 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63, 541-556.
Lugtenberg, B.J.J., Dekkers, L., Bloemberg, G.V., 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology 39, 461-490.
Mandal, S., Ray, R.C., 2011. Induced systemic resistance in biocontrol of plant diseases. In: Singh, A., Parmar, N., Kuhad, R.C., Eds.), Bioaugmentation, Biostimulation and Biocontrol. Springer Berlin Heidelberg, pp. 241-260.
Marian, M.N., Aminah, S.M.S., Zuraini, M.I., Son, R., Maimunah, M., Lee, H.Y., Wong, W.C., Elexson, N., 2012. MPN-PCR detection and antimicrobial resistance of Listeria monocytogenes isolated from raw and ready-to-eat foods in Malaysia. Food Control 28, 309-314.
Milling, A., Babujee, L., Allen, C., 2011. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS One 6, e15853.
Nguyen, M.T., Ranamukhaarachchi, S.L., 2010. Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology 92, 395-405.
Pal, K.K., McSpadden Gardener, B., 2006. Biological control of plant pathogens. The Plant Health Instructor, 1-25.
Perez-Garcia, A., Romero, D., de Vicente, A., 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22, 187-193.
Pliego, C., de Weert, S., Lamers, G., de Vicente, A., Bloemberg, G., Cazorla, F.M., Ramos, C., 2008. Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Environmental Microbiology 10, 3295-3304.
Pliego, C., Ramos, C., Vicente, A., Cazorla, F., 2011. Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant and Soil 340, 505-520.
Raddadi, N., Cherif, A., Olizari, H., Marzorati, M., Brusetti, L., Boudabous, A., Daffonchio, D., 2007. Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Annals of Microbiology 57, 481-494.
Ramesh, R., Joshi, A., Ghanekar, M., 2009. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology & Biotechnology 25, 47-55.
Ren, J.H., Li, H., Wang, Y.F., Ye, J.R., Yan, A.Q., Wu, X.Q., 2013. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biological Control 67, 421-430.
Ryan, A.D., Kinkel, L.L., Schottel, J.L., 2004. Effect of pathogen isolate, potato cultivar, and antagonist strain on potato scab severity and biological control. Biocontrol Science and Technology 14, 301-311.
Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., Pare, P.W., 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134, 1017-1026.
Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., Manners, J.M., 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America 97, 11655-11660.
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671-675.
Svercel, M., Hamelin, J., Duffy, B., Moenne-Loccoz, Y., Defago, G., 2010. Distribution of Pseudomonas populations harboring phlD or hcnAB biocontrol genes is related to depth in vineyard soils. Soil Biology & Biochemistry 42, 466-472.
Swanepoel, A.E., 1992. Survival of South-African strains of biovar-2 and biovar-3 of Pseudomonas solanacearum in the roots and stems of weeds. Potato Research 35, 329-332.
Swanson, J.K., Yao, J., Tans-Kersten, J., Allen, C., 2005. Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95, 136-143.
Tan, S., Dong, Y., Liao, H., Huang, J., Song, S., Xu, Y., Shen, Q., 2013a. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Management Science 69, 1245-1252.
Tan, S.Y., Jiang, Y., Song, S., Huang, J.F., Ling, N., Xu, Y.C., Shen, Q.R., 2013b. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Protection 43, 134-140.
Thomas, H.A., 1942. Bacterial densities from fermentation tube tests. Journal of the American Water Works Association 24, 572-576.
Vallad, G.E., Goodman, R.M., 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science 44, 1920-1934.
van Loon, L.C., Bakker, P.A.H.M., Pieterse, C.M.J., 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36, 453-483.
Vanitha, S., Niranjana, S., Mortensen, C., Umesha, S., 2009. Bacterial wilt of tomato in Karnataka and its management by Pseudomonas fluorescens. BioControl 54, 685-695.
Vasse, J., Frey, P., Trigalet, A., 1995. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant-Microbe Interactions 8, 241-251.
Wang, J.F., Hanson, P., Barnes, J.A., 1998. Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In: Prior, P., Allen, C., Elphinstone, J., Eds.), Bacterial Wilt Disease. Springer Berlin Heidelberg, pp. 269-275.
Wang, J.F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L., Grimsley, N.H., 2000. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Molecular Plant-Microbe Interactions 13, 6-13.
Xue, Q.Y., Ding, G.C., Li, S.M., Yang, Y., Lan, C.Z., Guo, J.H., Smalla, K., 2013. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains - an improved strategy for selecting biocontrol agents. Applied Microbiology and Biotechnology 97, 1361-1371.
Yamada, S., Ohashi, E., Agata, N., Venkateswaran, K., 1999. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringinesis, B. mycoides, and B-anthracis and their application to the detection of B. cereus in rice. Applied and Environmental Microbiology 65, 1483-1490.
Yu, X.M., Ai, C.X., Xin, L., Zhou, G.F., 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology 47, 138-145.
Zhao, Q.Y., Ran, W., Wang, H., Li, X., Shen, Q.R., Shen, S.Y., Xu, Y.C., 2013. Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl 58, 283-292.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55546-
dc.description.abstract由 Ralstonia solanacearum 所引起的青枯病,又稱細菌性萎凋病 (bacterial wilt),是植物重要的細菌性病害之一,目前尚無有效的防治方式。在本研究中,我們從自然環境中分離了77 株細菌菌株,並利用特殊培養基測試其螯鐵蛋白的合成及拮抗青枯病菌能力。將其中14 株具有上述兩種抗菌能力的細菌株,接種在兩種番茄品種上觀察其生物防治效力。實驗結果顯示,WF02, WF03 與 DH25 這三株細菌株具有明顯降低青枯病在中等抗病品種番茄 (Micro-Tom) 的死亡率、病情指數及病情發展曲線下面積 (area under disease progress curve, AUDPC) 之效能,其中 WF02 菌株在易感病品種番茄 (L390) 上亦有防治效果。經比對三株細菌株的16S rDNA 和 gyrB 基因序列以及利用 GEN III MicroPlate 進行菌種鑑定,顯示三株細菌株均屬於液化澱粉芽孢桿菌 (Bacillus amyloliquefaciens)。為進一步探討其可能之抑病機制,我們以 MPN-PCR 檢測土壤中的病原菌數。在預先處理 WF02 菌株的土壤樣本中的病原菌數量明顯低於僅處理病原菌的對照組。我們同時也利用 real-time PCR 偵測植株體內與 salicylic acid (SA)、jasmonic acid (JA) 和 ethylene (ET) 等信息傳導路徑相關的植物防禦基因的表現量,發現若在病原菌感染之前預先處理WF02的植株,在兩種番茄品種的葉片中,與 SA 及 JA 相關之基因表現量皆明顯上昇,而預先處理WF03 及 DH25的植株,只在 Micro-Tom 中觀察到植物抗病相關基因表現之提升。因此我們推測 B. amyloliquefaciens WF02 菌株可能是利用拮抗作用或活化植物防禦反應等機制達到抑制青枯病的效果。zh_TW
dc.description.abstractBacterial wilt caused by a soil-borne pathogen, Ralstonia solanacearum is a serious plant disease and there is no effective method to control presently. In this study, 77 bacterial strains were screened by in vitro medium test for siderophore production ability and antagonist against R. solanacearum. Fourteen bacteria that have both abilities were assessed their in vivo biocontrol actives against R. solanacearum by pot experiments with two tomato cultivars. We found that three potential isolates (WF02, WF03 and DH25) could reduce the mortality, disease incidence and area under disease pathogenesis curve (AUDPC) in the resistance cultivar Micro-Tom. WF02 could also reduce the disease severity in the susceptive cultivar L390. Analysis of 16S rRNA and gyrB gene sequences and GEN III MicroPlate revealed that these isolates all belong to Bacillus amyloliquefaciens. We determined the pathogen population in rhizosphere soils by MPN-PCR, and found that the number of pathogen population was significantly reduced by WF02 pretreated soil as compared with that of control. We used real-time PCR to analyze the expressions of the plant defense genes that are related to salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways. Treating with the WF02 isolate could obviously induce the expressions of SA and JA related genes in both tomato cultivars, but WF03 and DH25 only induced the plant resistance in tomato cv. Micro-Tom. Taken together, we deduced that the B. amyloliquefaciens WF02 isolate can use various mechanisms, such as antagonistic effects or activation of plant defense reactions to suppress tomato bacterial wilt disease.en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:08:37Z (GMT). No. of bitstreams: 1
ntu-103-R00645002-1.pdf: 18716870 bytes, checksum: a05e8c78ee680caa02668e6224c8afc2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
Contents VI
Introduction 1
Materials and methods 8
Collection and identification of bacterial strains 8
Plant hosts and pathogen materials 9
Screening of potential bacterial strains by in vitro test 10
in vivo biocontrol activity of Bacillus isolates 11
Detection of populations of R. solanacearum in soil by most probably number-PCR 13
Expression of defense genes after potential bacterial strains treatment 14
Results 17
Screening and identification of potential bacterial strains 17
in vivo biocontrol activity of Bacillus isolates 18
Detection of populations of R. solanacearum in tomato-cultivated soils by MPN-PCR 20
Expressions of plant defense genes in tomato after treatment with Bacillus isolates 22
Discussion 26
Table and Figure 32
Reference 59
Supplementary table and figure 66
dc.language.isoen
dc.subject青枯病zh_TW
dc.subject液化澱粉芽孢桿菌zh_TW
dc.subject生物防治zh_TW
dc.subject番茄zh_TW
dc.subjectBacillus amyloliquefaciensen
dc.subjectBacterial wilten
dc.subjectBiocontrolen
dc.subjectTomatoen
dc.title篩選台灣土壤細菌應用於茄科青枯病之防治zh_TW
dc.titleScreening soil bacterial strains for controlling tomato bacterial wilt in Taiwanen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor劉啟德(Chi-Te Liu)
dc.contributor.oralexamcommittee謝奉家(Feng-Chia Hsieh),劉?睿(Je-Ruei Liu),林乃君(Nai-Chun Lin)
dc.subject.keyword青枯病,生物防治,液化澱粉芽孢桿菌,番茄,zh_TW
dc.subject.keywordBacterial wilt,Biocontrol,Bacillus amyloliquefaciens,Tomato,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2014-08-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物醫學碩士學位學程zh_TW
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
18.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved