Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾仁賜
dc.contributor.authorYu-Hsin Huangen
dc.contributor.author黃育歆zh_TW
dc.date.accessioned2021-06-16T04:07:37Z-
dc.date.available2014-09-03
dc.date.copyright2014-09-03
dc.date.issued2014
dc.date.submitted2014-08-28
dc.identifier.citation王明仁、王明光、譚鎮中、賴朝明。2003。塔塔加高山森林生態系中土壤微生物生質量、酸性磷酸酯酶活性與土壤中生物有效性磷含量之關係。土壤與環境,6: 47-58。
王明光。1999。塔塔加地區土壤生態養分動態及土壤調查。行政院國家科學委員會,臺北,臺灣。
王明光。2007。森林土壤化學。華香園出版社,臺北,臺灣。
江凱楹。2002。溪頭地區三種植生下根圈與本體土壤理化性質之分析。國立臺灣大學森林學研究所碩士論文,臺北,臺灣。
江凱楹、陳子浩、王亞男、劉興旺。2002。溪頭地區七種林相之地被物與土壤物理化學性質調查。臺大實驗林研究報告,16: 37-44。
何念祖、孟賜福。1987。植物營養原理。上海科學技術出版社,上海,中國。
林世宗。1989。不同植栽距離下柳杉林分之生長及其養分動態之研究。國立臺灣大學森林學研究所博士論文,臺北,臺灣。
林國銓、黃菊美、杜清澤。不同綠葉在福山闊葉林之分解和養分動態變化。臺大實驗林研究報告,21: 15-27。
周恩存。2006。不同施肥管理對土壤之磷及氮劃分之影響。國立臺灣大學農業化學研究所碩士論文,臺北,臺灣。
姜家華、劉興旺。1989。樹齡與季節對柳杉枯枝落葉量及養分含量之影響。臺大實驗林研究報告,3: 1-20。
范少輝、肖復明、汪思龍、蘇文會、于小軍、申正其。2009。毛竹林細根生物量及其周轉。林業科學,7: 1-7。
高毓斌。1985。臺灣孟宗竹林之乾物生產與生物性養分循環。國立臺灣大學森林學研究所博士論文,臺北,臺灣。
徐陽春、沈其榮、茆澤聲。2002。長期施用有機肥對土壤及不同粒級中酸解有機氮含量與分配的影響。中國農業科學,35: 403-409。
翁菁羚、關秉宗、江博能、王明光。2008。臺灣中部三種針葉林土壤之有機氮型態對氮礦化作用之影響。中華林學季季刊,41: 493-501。
張仲民。1988。普通土壤學。茂昌圖書有限公司,臺北,臺灣。
許正一、陳尊賢、蔡呈奇。1999。臺灣農地土壤品質指標之選擇與土壤品質評估方法之架構。土壤與環境,2: 77-88。
陳秋萍。2013。臺灣中部溪頭地區天然林與毗鄰之不同人工林土壤碳儲存量之評估。國立臺灣大學生物資源暨農學院實驗林管理處,南投,臺灣。
彭少麟、劉強。2002。森林凋落物動態及其對全球變暖的回應。生態學報,22: 1534-1544。
楊光盛、洪崑煌。1992。Mehlich No. 3 抽出法對臺灣土壤的適用性 I. 土壤有效磷、鉀、鈣與鎂抽取試驗。中國農業化學會誌,30: 396-412。
楊淑瀚。2007。溪頭天然闊葉林枯落物及其落葉氮、磷濃度之動態變化。國立臺灣大學森林環境暨資源學研究所碩士論文,臺北,臺灣。
劉瓊霦、許博行。1996。三種相鄰不同林分穿落水化學性質的初期研究。國立中興大學實驗林研究彙刊,18: 57-64。
蔣先覺、陳尊賢、林光清、洪富文。1994。臺灣高山森林土壤形態,性質與分類。臺灣林業試驗所,臺北,臺灣。
劉有祥。1995。土壤溫度與水分境況對大肚山土壤磷吸附、磷脫附和磷有效性的影響。國立中興大學土壤環境科學研究所碩士論文,臺中,臺灣。
謝明志、萬鑫森。1982。矽酸鈉對土壤表面電荷及穩定性之影響。中華水土保持學報,13: 77-94。
顏江河、陳佳慧。2002。惠蓀林場三種林分枯落物養分迴歸量之季節變化。林業研究季刊,24: 53-70。
Aerts, R. 1997. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 79: 439-449.
Allison, L. E., L. Bernstein, C. A. Bower, J. W. Brown, M. Fireman, J. T. Hatcher, H. E. Heyward, G. A. Pearson, R. C. Reeve, L. A. Richards and L. V. Wilcox. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture handbook 60. USDA.
Anderson, G., E. G. Williams and J. O. Moir. 1974. A comparison of sorption of inorganic orthophosphate and inositol hexaphosphate by six acid soils. J. Soil Sci. 25: 51-62.
Angers, D. A. 1998. Water-stable aggregation in Quebec silty-clay soil: Some factors controlling its dynamics. Soil Till. Res. 47: 91-96.
Anurag, R. and M. M. Srivastava. 1986. Litter production in a Populus deltoides Marsh. plantation. Forest Ecol. Manag. 15: 215-218.
Barg ali, S. S., S. P. Singh and R. P. Singh. 1993. Patterns of weight loss and nutrient release from decomposing leaf litter in an age series of eucalypt plantations. Soil Biol. Biochem. 25: 1731-1738.
Barral, M. T., M. Arias and J. Guerif. 1998. Effects of iron and organic matter on the porosity and structure stability of soil aggregates. Soil Till. Res. 46: 261-272.
Bartsch, N. Responses of root systems of young Pinus sylvestris and Picea abies plants to water deficits and soil acidity. Can. J. For. Res. 17: 805-815.
Berg, B., B. Wessen and G. Ekbohm. 1982. Nitrogen level and lignin decomposition in Scot pine needle litter. Oikos 38: 291-296.
Berg, B., M. P. Berg, P. Bottner, E. Box, A. Breymeyer, R. Calvo De Anta, M. Couteaux, A. Escudero, A. Gallardo, W. Kratz, M. Madeira, E. Malkonen, C. McClaugherty, V. Meentemeyer, F. Munoz, P. Piussi, J. Remacle and A. Virzo De Santo. 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochemistry 20: 127-159.
Binkley, D. and S. C. Hart. 1989. The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10: 59-62.
Bormann, F. H., G. E. Likens, T. G. Siccama, R. S. Pierce and J. S. Eaton. 1974. The export of nutrients and recovery of stable conditions following deforestation at Hubbard Brook. Eco. Monogr. 44: 255-277.
Bowman, R. A. and C. V. Cole. 1978. Transformations of organic phosphorus subtrates in soil evaluation of residual phosphate by four phosphorus methods in neutral and calcareous soils. Soil Sci. 125: 49-54.
Brady, N. C. and R. R. Weil. 2002. Classes of salt-affected soils. In S. Helba (ed.) The nature and properties of soils. 13th ed., pp. 426-429. Pearson Education, Bergen, NJ.
Bremner, J. M. 1965. Total nitrogen, inorganic forms of nitrogen, organic forms of nitrogen. In C. A. Black (ed.) Methods of soil analysis Part 2. Am. Soc. of Agron., Madison, WI.
Bryant, J. C., T. W. Bendixen and C. S. Slater. 1948. Measurement of the water-stability of soils. Soil Sci. 65: 341-345.
Chaney, K. and R. S. Swift. 1984. The influence of organic matter on aggregate stability in some British soils. J. Soil Sci. 35: 223-230.
Chenu, C. and J. Guerif. 1991. Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide. Soil Sci. Soc. Am. J. 55: 1076-1080.
Chenu, C., J. Guerif and A. M. Jaunet. 1994. Polymer bridging: A mechanism of clay and soil structure stabilization by polysaccharides. In 14th World Congress of Soil Science, 3a. pp. 403-410. ISSS. Accapulco, Mexico.
Chenu, C., Y. Le Bissonnais, D. Arrouays. 2000. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 64: 1479-1486.
Chiang, K. Y., Y. N. Wang, M. K. Wang and P. N. Chiang. 2006. Physical and chemical properties in rhizosphere soils of Chamaerparis formosensis, Cryptomeria japonica and Phyllostachys pubescens in a temperate rain forest. Taiwan J. For. Sci. 21: 327-337.
Christanty, L., D. Mailly and J. P. Kimmins. 1996. “Without bamboo, the land dies”: Biomass, litterfall, and soil organic matter dynamics of a Javanese bamboo talun-kebun system. Forest Ecol. Manag. 87: 75-88.
Cole, D. W., S. P. Gessel and S. F. Dice. 1967. Distribution and cycling of nitrogen, phosphorus, potassium and calcium in the second-growth Douglas-fir ecosystem. In H. E. Young (ed.) Symposium on primary productivity, mineral cycling in natural ecosystems. pp. 197-232. Univ. Maine Press. Orono, ME.
Cushman, J. H. 1982. Nutrient transport inside and outside the root rhizosphere: Theory. Soil Sci Soc. Am. J. 46: 704-709.
Dorich, R. A., D. W. Nelson, and L. E. Sommers. 1985. Estimating algal available phosphorus in suspended sediments by chemical extraction. J. Environ. Qual. 14: 400-405
Dorioz, J. M., M. Robert and C. Chenu. 1993. The role of roots, fungi and bacteria, on clay particle organization. An experimental approach. Geoderma 56: 179-194.
Dormaar, J. 1972. Seasonal patterns of soil organic phosphorus. Can. J. Soil Sci. 52: 107-122.
Edwards, P. J. 1982. Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litterfall. J. Ecol. 70: 807-827.
FAO. 2009. State of the world’s forest. Food and Organization of United Nations, Rome, Italy.
Gama-Rodrigues, A. C., N. F. Barros and N. B. Comerford. 2007. Biomass and nutrient cycling in pure and mixed stands of native tree species in southeastern. R. Bras. Ci. Solo 31: 287-298.
Hart, S. C., J. M. Stark, E. A. Davidson and M. K. Firestone. 1994. Nitrogen mineralization, immobilization and nitrification. In P. S. Bottomley, J. S. Angle and R. W. Weaver (eds.) Methods of soil analysis Part 2. 3rd ed., pp. 985-1018. Soil Sci. Soc. Am. J., Madison, WI.
Haussling, M. and H. Marschner. 1989. Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce Picea abies (L.) Karst. Trees. Biol. Fertil. Soils 8: 128-133.
Haynes, R. J., R. S. Swift and K. C. Stephen. 1997. Influence of mixed cropping rotations (pasture-arable) on organic matter content, water-stable aggregation and clod porosity in a group of soils. Soil Till. Res. 19: 77-81.
Hedley, M. J., J. W. B. Stewart and B. S. Chauhan. 1982a. Changes in the inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation. Soil Sci. Soc. Am. J. 46: 970-976.
Hedley, M. J., R. E. White and P. H. Nye. 1982b. Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. Ⅲ. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytol. 91: 45-56.
Horng, F. W. and R. C. Huang. 1999. Effect of sample treatments on estimation of in situ soil available nitrogen of the fushan hardwood forest. Taiwan Forest Sci. 14: 331-337
Horwitz, W. 1980. Official methods of analysis of the Association of Official Analytical Chemist. pp. 181-182. Association of Official Analytical Chemist, Rockville, MD.
Jones, D. L. and K. Kielland. 2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol. Biochem. 34: 209-219.
Kelley, K. R. and F. J. Stevenson. 1996. Organic forms of N in Soil. In A. Piccolo (ed.) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam.
Kemper, W. D. and E. J. Koch. 1966. Aggregate stability of soils from the western portions of the United States and Canada. U. S. Dep. Agric. Tech. Bull.
Kemper, W. D. and R. C. Rosenau. 1986. Aggregate stability and size distribution. In A. Klute (ed.) Methods of soil analysis Part 1. 2nd ed., pp. 425-442. Am. Soc. of Agron and Soil Sci. Soc. Am. J., Madison, WI.
Killham, K. 1994. The ecology of soil nutrient cycling. In K. Killham (ed.) Soil Ecology. Cambridge University Press, Cambridge, UK.
Laudicina, V. A., E. Palazzolo and L. Badalucco. 2013. Natural organic compounds in soil solution: Potential role as soil quality indicators. Curr. Org. Chem. 17: 2991-2997.
Le Bissonnais, Y. 1996. Aggregate stability and measurement of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47: 425-437.
Lee, D., X. G. Han and C. F. Jordan. 1990. Soil phosphorus fractions, aluminium, and water retention as affected by microbial activity in an Uitisol. Plant Soil 121: 125-136.
Linsay, W. L. 1972. Inorganic phase equilibria of micronutrients in soils. In J. J. Mortvedt, P. M. Giordano and W. L. Lindsay (eds.) Micronutrients in agriculture. Soil Sci. Soc. Am. J., Madison, WI.
Linsay, W. L. 1979. Chemical equilibria in soils. John Wiley & Sons. NY.
Lisanework, N. and Michelsen A. 1994. Litterfall and nutrient release by decomposition in three plantations compared with a natural forest in the Ethiopian highland. Forest Ecol. Manag. 65: 149-164.
Liu, C., B. Berg, W. Kutsch, C. J. Westman, H. Ilvesniemi, X. Shen, G. Shen and X. Chen. 2006. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests. Global Ecol. Biogeogr. 15: 438-444
Lovett, G. M. 1984. Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos. Eviron. 18: 361-371.
Mallarino, A. P., J. E. Sawyer and S. K. Barnhart. 2013. A general guide for crop nutrient and limestone recommendations in Iowa. USDA in cooperation with Iowa State University of Science and Technology, Ames, Iowa.
Martin, J. P. and K. Haider. 1986. Interactions of soil minerals with natural organics and microbes. In P. M. Huang and M. Schnitzer (eds.) Environmental impact of soil component interactions. pp. 283-304. Soil Sci. Soc. Am. J., Madison, WI.
McLean, E. O. 1982. Soil pH and lime requirement. In A. L. Page (ed.) Methods of soil analysis Part 2. 2nd ed., pp. 192-224. Am. Soc. of Agron and Soil Sci. Soc. Am. J., Madison, WI.
Mehlich, A. 1985. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409-1416.
Miller, R. M. and J. D. Jastrow. 1990. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol. Biochem. 22: 570-584.
Myrold, D. D. 2005. Transformations of nitrogen. In D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel and D. A. Zuberer (eds.) Principles and applications of soil microbiology. pp. 333-372. Pearson Prentice Hall, Bergen, NJ.
Nambu, K. and K. Yonebayashi. 1999. Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferous and broad leaf forests. Soil Sci. Plant Nutr. 45: 307-319.
Nannipieri, P and P. Eldor. 2009. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41: 2357-2369.
Nye, P. H. 1961. Organic matter and nutrient cycles under moisture tropical forest. Plant Soil 14: 333-346.
Panabokke, C. R. and J. P. Quirk. 1957. Effect of water content on stability of soil aggregates in water. Soil Sci. 83: 185-195.
Paul, E. A. and F. E. Clark. 1996. Soil microbiology and biochemistry. 2nd ed. Academic Press, NY.
Powers, R. F. 1990. Nitrogen mineralization along an altitudinal gradient — interactions of soil-temperature, moisture, and substrate quality. Forest Ecol. Manag. 30: 19-29.
Pritchett, W. L. 1979. Properties and management of forest soils. John Wiley & Sons, NY.
Rhoades, J. D. 1982. Soluble salts. In A. L. Page (ed.) Methods of soil analysis Part 2. 2nd ed., pp. 167-178. Am. Soc. of Agron and Soil Sci. Soc. Am. J., Madison, WI.
Roberts, T. L., J. W. B. Stewart and J. R. Bettany. 1985. The influence of topography on the distribution of organic and inorganic soil phosphorus across a narrow environmental gradient. Can. J. Soil Sci. 65: 651-665.
Rothstein, D. E. 2010. Effects of amino-acid chemistry and soil properties on the behaviour of free amino acids in acidic forest soils. Soil Biol. Biochem. 42: 1743-1750.
Satti, P., M. J. Mazzarino, M. Gobbi, F. Funes, L. Roselli and H. Fernandez. 2003. Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests. J. Ecol. 91:173-181.
Schaller, F. W. and K. R. Stockinger. 1953. A comparison of five methods for expressing aggregation data. Soil Sci. Soc. Am. Proc. 17: 310-313.
Schnitzer, M. 1986. Metal humic complex in soils. In P. M. Huang and M. Schnitzer (eds.) Interactions of soil minerals with natural organics and microbes. pp. 92-100. Soil Sci. Soc. Am. J., Madison, WI.
Schnitzer, M. and M. Spiteller. 1986. The chemistry of the “unknown” soil nitrogen. Trans. Conf. Int. Soil Sci. Soc. 13: 473-474.
Schoenau, J. J. and W. Z. Huang. 1991. Anion‐exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus. Commun. Soil Sci. Plant Anal. 22: 465-492.
Schoenau, J. J., J. W. B. Stewart and J. R. Bettany. 1989. Forms and cycling of phosphorus in prairie and boreal forest soils. Biogeochemistry 8: 223-237.
Schoenholtz, S. H., H. V. Miegroet and J. A. Burger. 2000. A review of chemical and physical properties as indicators of forest soil quality: challenge and opportunities. Forest Ecol. Manag. 138: 335-356.
Sharpley, A. N., W. W. Troeger and S. J. Smith. 1995. The measurement of bioavailable phosphorus in agricultural runoff. J. Environ. Qual. 20: 235-238.
Sibbesen, E. 1978. An investigation of the anion-exchange resin method for soil phosphate extraction. Plant Soil 50: 305–321.
Sims, J. T. 1989. Comparison of Mehlich 1 and Mehlich 3 extractants for P, K, Ca, Mg, Mn, Cu and Zn in Atlantic Coastal Plain soils. Commun. Soil Sci. Plant Anal. 20: 1707-1726.
Singh, A. N. and J. S. Singh. 1999. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. Forest Ecol. Manag. 119: 195-207.
Sinsabaugh, R. L. and D. L. Moorhead. 1994. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26: 1305-1311.
Slavich, P. G. and G. H. Petterson. 1993. Estimating the electrical conductivity of saturated paste extracts from 1:5 soil:water suspensions and texture. Aust. J. Soil Res. 31: 73-81.
Smeck, N. E. 1985. Phosphorus dynamics in soils and landscapes. Geoderma 36: 185-189.
Soil Survey Division Staff. 1993. Soil survey manual Chapter 3: Selected chemical properties. USDA.
Stevenson, F. J. 1982. Organic forms of soil nitrogen. In F. J. Stevenson (ed.) Nitrogen in agricultural soils. pp. 67-122. Am. Soc. of Agron and Soil Sci. Soc. Am. J., Madison, WI.
Stevenson, F. J. 1986. Cycle of soil. carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, NY.
Stevenson, F. J. 1994. Humus chemistry, genesis, composition, reaction. 2nd ed., pp. 496. John Wiley & Sons, NY.
Stewart, J. W. B. and A. N. Sharpley. 1987. Controls on dynamics of soil and fertilizer phosphorus and sulfur. In R. F. Follett, J. W. B. Stewart and C. V. Cole (eds.) Soil fertility and organic matter as critical components of production system. pp. 101-121. Am. Soc. of Agron and Soil Sci. Soc. Am. J., Madison, WI.
Stewart, J. W. B. and H. Tiessen, 1987. Dynamics of soil organic phosphorus. Biogeochemistry 4: 41-60.
Strickling, E. 1951. The effect of soybeans on volume weight and water stability of soil aggregates, soil organic matter content and crop yield. Soil Sci. Soc. Am. Proc. 15: 30-34.
Sui, Y. and M. L. Thompson. 1999. Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Sci. Soc. Am. J. 63: 1174-1180.
Sullivan, L. A. 1990. Soil organic matter, air encapsulation and water stable aggregation. J. Soil Sci. 41: 529-534.
Taiwan Forestry Bureau. 1994. The third forest resources and land use inventory in Taiwan. Taiwan Forest Bureau, Taipei, Taiwan.
Tarafdar, J. C. and A. Junk. 1987. Phosphate activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fertil. Soils 3: 199-204.
Tarafdar, J. C. and N. Claassen. 1988. Organic phosphorus compounds produced by plant roots and microorganisms. Biol. Fertil. Soils 5: 308-312.
Tiessen, H. and J. W. B. Stewart. 1985. The biogeochemistry of soil phosphorus. In D. E. Caldwell, J. A. Brieley and C. L. Brieley. (eds.) Planetary ecology. pp. 463-472. Van Nostrand and Reinhold, NY.
Tiessen, H., J. W. B. Stewart and C. V. Cole. 1984. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci. Soc. Am. J. 48: 853-858.
Tisdall, J. M. and J. M. Oades. 1982. Organic matter and water-stable aggregates. J. Soil Sci. 33: 141-163.
Umemura, M. and C. Takenaka. 2014. Biological cycle of silicon in moso bamboo (Phyllostachys pubescens) forests in central Japan. Ecol. Res. 29: 501-510.
Vitousek, P. M. and R. L. Standford. 1986. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17: 137-167.
Vitousek, P. M. and P. A. Matson. 1988. Nitrogen transformations in a range of tropical forest soils. Soil Biol. Biochem. 20: 361-367.
Vitousek, P. M. and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87-115.
Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger and D. G. Tilman. 1997. Human alternation on global nitrogen cycling: sources and consequences. Ecol. Appl. 7: 737-750.
Wager, B. I., J. W. B. Stewart and J. O. Moir. 1986. Changes with time in the form and availability of residual fertilizer phosphorus on Cheruozemic soils. Can. J. Soil Sci. 66: 105-119.
Walker, T. W. and J. K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1-19.
Williams, J. D. H., J. K. Syers, R. F. Harris and D. E. Armstrong. 1971. Fractionation of soil inorganic phosphate in calcareous lake sediment. Soil Sci. Soc. Amer. Proc. 35: 250-255.
Yadav, J. S. P. 1963. Site and soil characteristics of bamboo forests. Indian Forester. 89: 177-193.
Yoder, R. E. 1936. A direct method of aggregate analysis of soil and a study of the physical nature of soil erosion losses. J. Am. Soc. Agron. 28: 337-351.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55529-
dc.description.abstract森林生態系的永續經營須仰賴良好的土壤品質,而土壤的性質和養分循環在不同植生組成之林相間可能產生差異。本研究選擇溪頭地區環境條件相似之毗鄰林地,採集天然闊葉林、人工柳杉林和竹林土壤剖面,調查三種林相的土壤性質和團粒穩定度,並探討氮磷劃分在不同深度土層的有效性和分布,以瞭解不同植生對土壤性質之影響。研究結果顯示,三種林相之土壤 pH 值由低到高依序為天然林、柳杉林和竹林;有機質含量以竹林土壤最低,導電度值則在林相間沒有差異。Mehlich Ⅲ 可萃取性鈣、鎂、鐵、銅和鋅濃度在三種林相間沒有差異;Mehlich Ⅲ 可萃取性磷和鉀濃度由高到低則大致為天然林、柳杉林和竹林;Mehlich Ⅲ 可萃取性錳在竹林土壤中濃度最高。所有樣區的表層土壤 (0-10 cm) 有最低的 pH 值及最高的電導度,且有機質含量及 Mehlich Ⅲ 可萃取性磷、鉀、鎂、鐵、錳和鋅濃度最高。三種林相中,柳杉林和竹林的團粒穩定度高於天然林,不同深度的樣區間則無差異。不同劃分的氮中,除無機態氮與水解性銨態氮外,林相間各個氮劃分濃度大致以天然林最高、竹林最低,柳杉林則介於兩者之間;所有氮劃分濃度隨著土層深度增加而遞減,在 0-5 cm 土壤中濃度最高,10 cm以下則無差異。總磷、碳酸氫鈉萃取磷和氫氧化鈉萃取磷濃度大致以天然林最高、竹林最低,水萃取磷、鹽酸萃取磷和殘餘磷在林相間無差異;所有磷劃分在0-5公分土層中有最高濃度,並隨深度增加而遞減。綜上所述,天然林、柳杉林和竹林之土壤性質、團粒穩定度和氮磷形態及濃度分布具有一定之差異。zh_TW
dc.description.abstractSustainability of forest ecosystems relies on good soil qualities. The diversities of vegetation in forest stands may arise differences in soil properties and affect nutrient cycling. This study aimed to investigate the soil properties, aggregates stability, nitrogen (N) and phosphorus (P) fractions in soils collected from natural broad-leaf stand (Nat-F), Japanese cedar plantation (Cedar-F) and Moso bamboo plantation (Bamb-F) in Xitou, Taiwan. The results showed that soil pH value increased in the order of Nat-F, Cedar-F and Bamb-F; organic matter content was the lowest in Bamb-F soil and no significant difference in electrical conductivity among three forest stands. Concentrations of Mehlich Ⅲ extractable P and potassium (K) decreased in the order of Nat-F, Cedar-F and Bamb-F while manganese (Mn) was the highest in Bamb-F. There was no significant difference in concentrations of Mehlich Ⅲ extractable calcium (Ca), magnesium (Mg), iron (Fe), copper (Cu) and zinc (Zn) among three forest stands. The topsoil (0-10 cm) showed the lowest pH value and the highest electrical conductivities in all studied sites. The organic matter contents and Mehlich Ⅲ extractable P, K, Mg, Fe, Mn and Zn also showed the highest concentrations in 0-10 cm layers. Aggregate stability in Cedar-F and Bamb-F soil profiles was greater than in Nat-F, but there was no differences in aggregate stability in varied depths of the same forest stand. The concentrations of all N fractions studied were the highest in Nat-F and the lowest in Bamb-F soil with the exception of inorganic N and hydrolyzable ammonium N fractions. The concentrations of different fractions of N decreased with increase in depth and were the highest in 0-5 cm soil layer. The Nat-F soil had the highest concentrations of total P, NaHCO3-P and NaOH-P while there was no significant difference in H2O-P, HCl-P and residue-P in three forest stands. In conclusion, there were differences in soils of Nat-F, Cedar-F and bamboo-F in chosen properties, aggregate stability, different fractions of N and P.en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:07:37Z (GMT). No. of bitstreams: 1
ntu-103-R01623016-1.pdf: 1772094 bytes, checksum: 5d5d13ce797654c901c33ed448670ce1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 ------------------------------------------------------------------------------------------------I
Abstract -------------------------------------------------------------------------------------------II
目錄 ----------------------------------------------------------------------------------------------IV
圖目錄 -------------------------------------------------------------------------------------------VI
表目錄 ------------------------------------------------------------------------------------------VII
附圖目錄 --------------------------------------------------------------------------------------VIII
附表目錄 ----------------------------------------------------------------------------------------IX
第一章 前言與研究目的 -------------------------------------------------------------------- 1
第二章 前人研究 ----------------------------------------------------------------------------- 3
一、森林土壤 -------------------------------------------------------------------------------- 3
二、土壤團粒 -------------------------------------------------------------------------------- 3
三、土壤氮 ----------------------------------------------------------------------------------- 5
四、土壤磷 ----------------------------------------------------------------------------------- 7
五、竹林土壤 -------------------------------------------------------------------------------- 9
六、溪頭鳳凰山試驗區 -------------------------------------------------------------------- 9
第三章 材料與方法 ------------------------------------------------------------------------ 10
一、試驗地概述 ---------------------------------------------------------------------------- 10
二、樣品採集 ------------------------------------------------------------------------------- 10
三、樣品處理 ------------------------------------------------------------------------------- 10
四、試驗項目 ------------------------------------------------------------------------------- 15
五、試劑配製 ------------------------------------------------------------------------------- 16
六、實驗流程 ------------------------------------------------------------------------------- 18
七、統計分析 ------------------------------------------------------------------------------- 27
第四章 結果與討論 ------------------------------------------------------------------------ 28
一、土壤性質 ------------------------------------------------------------------------------- 28
二、土壤 Mehlich Ⅲ 可萃取性元素 -------------------------------------------------- 31
三、土壤團粒穩定度 ---------------------------------------------------------------------- 35
四、土壤氮劃分 ---------------------------------------------------------------------------- 37
五、土壤磷劃分 ---------------------------------------------------------------------------- 53
第五章 結論 --------------------------------------------------------------------------------- 64
第六章 參考文獻 --------------------------------------------------------------------------- 65
附錄 ----------------------------------------------------------------------------------------- 78
dc.language.isozh-TW
dc.title溪頭三種林相之土壤性質、團粒穩定度和氮磷劃分研究zh_TW
dc.titleThe investigation of soil properties, aggregates stability, nitrogen and phosphorus fractions in three forest stands in Xitouen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李達源,鄭智馨,陳仁炫,黃裕銘
dc.subject.keyword天然林,柳杉林,竹林,胺基醣態氮,胺基酸態氮,鹽酸萃取磷,殘餘磷,zh_TW
dc.subject.keywordnatural forest,Japanese cedar forest,bamboo forest,amino sugar-N,amino acid-N,HCl extractable-P,residual-P,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2014-08-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved