請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55508完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童國倫(Kuo-Lun Tung) | |
| dc.contributor.author | Chung-Chin Yang | en |
| dc.contributor.author | 楊宗晉 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:06:26Z | - |
| dc.date.available | 2019-07-29 | |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-09-03 | |
| dc.identifier.citation | Bhagat S. D., C. S. Oh, Y. H. Kim, T. S. Ahn and J. G. Yeo, “Methyltrimethoxysilane basedmonolithic silica aerogels via ambient drying,” Microporous Mater., 100, 350-355(2007).
Banat Fawzi A. and Jana Simandl, “Desalination by Membrane Distillation: A Parametric Study.” J. Sep. Sci., Volume 33, Issue 2, 201-226(1998). Calabro V., E. Drioli and F. Matera, “Membrane distillation in the textile wasterwater treatment,” Desalination, 83, 209-224(1991). Frohnhoff St., R. Arens-Fischer, T. Heinrich, J. Fricke, M. Arntzen, W. Theiss, “Characterization of supercritically dried porous silicon,”Thin Solid Films, 255, 115-118(1995). Hendren Z.D., J. Brant, M.R. Wiesner, “Surface modification of nanostructured ceramic membranes for direct contact membrane distillation,” J. Membr. Sci., 331, 1-10(2009). Ko Chia-Chieh, “Single-step synthesis of hydrophobic silica aerogel membranes for membrane contactors used for carbon dioxide capture,”master thesis of Department of Chemical Engineering College of Engineering of Chung Yuan Christian University, Zhongli City(2013). Lee Kun-Mu, “溶膠-凝膠法製備超疏水性薄膜材料,”master thesis of Department of Chemical Engineering College of Engineering of National Central University, Zhongli City(2004). Lloyd Douglas R., Kevin W. Lawson, “Membrane distillation,”J. Membr. Sci., 124, 1-25(1997). Li T. and Wang T., “Preparation of silica aerogel from ice hull ash by drying at atmosphericpressure,” Mater. Chem. Phys., 112, 398-401(2008). Lin Yi-Feng, Chia-Chieh Ko, Chien-Hua Chen, Kuo-Lun Tung and Kai-Shiun Chang, “Reusable methyltrimethoxysilane-based mesoporous water-repellent silica aerogel membranes for CO2 capture,” RSC Adv., 4, 1456(2014). Lin Yi-Feng, Chia-Chieh Ko, Chien-Hua Chen, Kuo-Lun Tung, Kai-Shiun Chang, Tsair-Wang Chung, “Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors,” Applied Energy, 129, 25-31(2014). Mengual J.I., L. Pena, “Membrane distillation,”Colloid Interf. Sci. 1, 17–29(1997). Mary Ann B. Meador, Lynn A. Capadona, Antonella Alunni, Eve F. Fabrizio, Plousia Vassilaras, Nicholas Leventis,“Flexible, low-density polymer crosslinked silica aerogels,”Polymer, 47, 5754-5761(2006). Nadargi D. Y., S.S. latthe and A. V. Rao, “Effect of post-treatment (gel aging) on 95 the properties of methyltrimethoxysilane based silica 11aerogels prepared by two-step sol-gel process,” J. Sol-Gel Technol., 49, 53-59 (2009). Noam Lior, A.M. Alklaibi, “Membrane-distillation desalination: status and potential,” Desalination, 171, 111–131(2004). Param H. TEWARI, Arlon J. HUNT and Kevin D. LOFFTUS, “Ambient-temperature supercritical drying of transparent silica aerogels,” Mater. Lett., Volume 3, number 9, 10(1985). Peng Yue-lian and Hong-wei Fan, “Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes,” Chem. Eng. Sci., 79, 94–102(2012). Rao A. V., S. D. Bhagat, H. Hirashima and G. M. Pajonk, “Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor,” J. Colloid Interface Sci., 300, 279-285(2006). Sarawade Pradip B., Jong-Kil Kim, Askwar Hilonga, Dang Viet Quang, Sun Jeong Jeon, Hee Taik Kim, “Synthesis of sodium silicate-based hydrophilic silica aerogel beads with superior properties: Effect of heat-treatment,” J. Non-Cryst. Solids, 357, 2156-2162(2011). Smolders K. and A.C.M. Franken, “Terminology for Membrane Distillation,”Desalination, 72, 249-262(1989). Sophie Cerneaux, Izabela Struz˙ yn’ ska, Wojciech M. Kujawski, Michel Persin, Andre Larbot, “Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes,” J. Membr. Sci., 337, 55-60(2009). Tang Q. and Wang T., “Preparation of silica aerogel from rice hull ash by supercritical carbondioxide drying,” J. of Supercritical Fluid, 35, 91-94(2005). Tsai Meng-Yang,“Study of scale-up of flat-sheet module for direct contact membrane distillation and the membrane distillation of plasma treated membrane,”master thesis of Department of Chemical Engineering College of Engineering of Chung Yuan Christian University, Zhongli City(2010). Van BOMMEL M. J., A. B. de HAAN, “Drying of silica gels with supercritical carbon dioxide,”J. Mater. Sci., 29, 943-948(1994). Wei T. Y., T. F. Chang and S. Y. Lu, “Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying,” J. Am. Ceram. Soc., 90, 2003-2007(2007). Xu B., J. Y. Cai, N. Finn and Z. Cai, “An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure Part I: Process development and macrostructures of the aerogels,” Microporous Mesoporous Mater., 148, 145-151(2012). Xu B., J. Y. Cai, Z. Xie, L. Wang, I. Burgar, N. Finn, Z. Cai and L. Wong, “An improved method for preparing monolithic aerogels based on methyltrimethoxysilane at ambient pressure Part II: Microstructure and performance of the aerogels,” Microporous Mesoporous Mater., 148, 152-158(2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55508 | - |
| dc.description.abstract | 本文主旨在以單步驟方式製備疏水性二氧化矽溶膠,將其覆蓋於氧化鋁陶瓷基材膜以達到縮孔及表面改質的目的,並將製備完成之氣凝膠薄膜應用於真空薄膜蒸餾系統中進行海水淡化效能測試。文中將探討氣凝膠薄膜之製備條件對其孔洞結構及真空薄膜蒸餾之操作效能的影響。
本文中以甲基三甲氧基矽烷(MTMS)作為前驅物,並固定水解及縮合反應中的水量和,藉由調整縮合步驟中所加入的乙醇量來改變EtOH2nd/MTMS之莫耳比,探討合成條件對於氣凝膠結構的影響。此外,水解及縮合反應中的催化劑濃度也是結構變化的重要因素。由水接觸角儀對氣凝膠薄膜表面進行疏水性測試,發現水接觸角隨著乙醇的添加量減少而上升,當EtOH2nd/MTMS之莫耳比為1時有最好的疏水程度,藉由掃描電子顯微鏡及比表面積與孔隙分析儀分別對氣凝膠表面覆蓋程度及氣凝膠孔洞結構進行分析,證實在此莫耳比下所製備的氣凝膠薄膜有較均勻的覆蓋情形及較小的孔徑分佈,以至於薄膜表面疏水度的提高。隨後將不同EtOH2nd/MTMS莫耳比下製備的薄膜進行真空薄膜蒸餾效能測試,滲透通量亦在EtOH2nd/MTMS為1時達到最高,證明良好的氣凝膠結構有助於薄膜通量效能的提升。 隨後固定EtOH2nd/MTMS為1及鹼催化劑濃度為17%,改變水解過程中加入的酸催化劑濃度,發現薄膜表面水接觸角隨著酸催化劑濃度先上升後下降,在酸催化劑濃度為0.56%時有最高的水接觸角;成膠時間則隨著酸催化劑濃度上升而增加;表面覆蓋程度、孔洞比表面積和平均孔洞體積則酸催化劑濃度增加而減少。真空薄膜蒸餾的效能測試方面,純水通量隨著酸催化劑濃度提高而增加,在酸催化劑濃度為0.84%時有高達20.24LMH的純水通量,若在進一步地提高酸催化劑濃度,薄膜因表面覆蓋不均而潤濕,以至於薄膜蒸餾失效。 接著進一步地提高鹼催化劑濃度,發現在不同濃度的酸催化劑下,25%的鹼催化劑相較於17%的鹼催化劑所製備的薄膜皆有較高的水接觸角、較短的成膠時間及較大的中孔孔徑。薄膜表面及截面則因緻密的結構使得質傳阻力增加,導致薄膜蒸餾純水通量顯著下降。 最後對MTMS氣凝膠薄膜進行熱重分析,發現MTMS氣凝膠薄膜具有相當好的耐熱性,在300℃以前都能維持穩固的結構,在薄膜蒸餾程序的操作溫度範圍之內都具有相當好的穩定性,證明了以MTMS二氧化矽溶膠進行縮孔的陶瓷膜具有很好的耐用性。 | zh_TW |
| dc.description.abstract | The purpose of this study is using a single-step procedure to prepare a hydrophobic silica aerogel to coat on aluminum ceramic substrate for pore size control and surface modification. The silica aerogel membrane is applied on vacuum membrane distillation for desalination performance test. In this study, the effect of synthesis conditions on pore structure and membrane distillation performance were be investigated.
Methylmethoxysilane(MTMS)is used as precursor and the molar of water and catalyst is fixed, to vary EtOH2nd/MTMS molar ratio by adjusting the amount of ethanol added in condensation reaction. The surface hydrophobicity test is conducted by contact angle system. As the results, the contact angle increases with decreasing amount of ethanol, while the best hydrophobicity is observed as EtOH2nd/MTMS molar ratio is one. Meanwhile, the report of Accelerated Surface Area and Porosimetry analyzer and Scanning Electron Microscope show that the silica aerogel with a narrow pore size distribution and uniform coverage. Furthermore, the silica aerogel membrane synthesized with EtOH2nd/MTMS molar ratio = 1 shows the highest water flux due to the better silica aerogel structure. Subsequently, EtOH2nd/MTMS molar ratio and the concentration of basic catalyst are fixed at 1 and 17% respectively, and the concentration of acidic catalyst added in hydrolysis reaction vary from 0.14% to 2.24%. As the results, the contact angle shows a trend of rise first, then fall at the concentration of acidic catalyst of 0.56%. However, to increase the concentration of acidic catalyst result in the increasing of the gelation time and the decreasing of average pore surface area, average pore volume and surface coverage. On the other hand, membrane distillation water flux can reach 20.24 LMH while the concentration of acidic catalyst is 0.84%, if further increase the concentration of acidic catalyst will lead to pore wetting due to non-uniform surface. The surface of silica aerogel membrane becomes more hydrophobic and the average pore size becomes larger while 25% basic catalyst is using, the mass transfer resistance is meanwhile raising due to the dense surface coverage. Therefore, membrane distillation water flux has an obvious falling. Finally, TGA analysis shows the great stability of chemical structure before 300℃ sintering, so the MTMS derived silica aerogel membrane with optimal synthesis condition exhibit high and stable water flux under continuous operation at high temperature and low vacuum pressure. In conclusion, aluminum ceramic substrate modified by MTMS derived silica aerogel is a high performance and durable material. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:06:26Z (GMT). No. of bitstreams: 1 ntu-103-R01524038-1.pdf: 3011953 bytes, checksum: 8db2020d117ca74212511ebb04578b33 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Table of Contents
Verification letter from the Oral Examination Committee……………………… i Acknowledgments…………………….……………………………………………. ii 摘要…………….……………………………………………………………………iii Abstract…………..………………………………………………………………….iv Table of Contents…..……………………………………………………………….vi List of Figure….…………………………………………………………...…...….viii List of Table…………………………...………………………………………..…..xii I. Introduction...1 II. Literature review...3 2-1 Membrane distillation...3 2-1-1 The configuration of membrane distillation ...5 2-1-2 The advantages of membrane distillation...8 2-1-3 The theory of membrane distillation...9 2-1-3 Application of membrane distillation in desalination...12 2-2 Mesoporous silica aerogel...20 2-2-1 Synthesis of silica aerogel...20 2-2-2 Supercritical drying process...22 2-2-3 Ambient pressure drying process...27 2-2-4 Methyltrimethoxysilane...31 III Experimental methods and equipments...50 3-1 Experimental material and Apparatus...50 3-1-1 Material...50 3-1-2 Equipment...54 3-2 Experimental method...58 3-2-1 Experiment purpose...58 3-2-2 Experimental procedure(silica aerogel membrane)...58 3-2-3 Experimental procedure(membrane distillation process)...60 3-3 Analysis method...61 IV Results and conclusion...64 4-1 The appraisal of pore structures and surface properties of MTMS derived silica aerogel...64 4-2 The performance of MTMS derived silica aerogel membrane on membrane distillation process....88 V Conclusion...94 Literature citation...96 | |
| dc.language.iso | en | |
| dc.subject | 陶瓷膜 | zh_TW |
| dc.subject | 甲基三甲氧基矽烷 | zh_TW |
| dc.subject | 二氧化矽氣凝膠 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 真空薄膜蒸餾 | zh_TW |
| dc.subject | 甲基三甲氧基矽烷 | zh_TW |
| dc.subject | 二氧化矽氣凝膠 | zh_TW |
| dc.subject | 陶瓷膜 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 真空薄膜蒸餾 | zh_TW |
| dc.subject | vacuum membrane distillation | en |
| dc.subject | silica aerogel | en |
| dc.subject | ceramic membrane | en |
| dc.subject | Methylmethoxysilane | en |
| dc.subject | surface modification | en |
| dc.title | 以甲基三甲氧基矽烷作為前驅物製備之疏水性
聚甲基矽氣凝膠薄膜於真空薄膜蒸餾之應用 | zh_TW |
| dc.title | Methylmethoxysilane derived hydrophobic polymethylsilsesquioxane aerogel membranes
for vacuum membrane distillation applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃國楨(Kuo-Jen Hwang),莊清榮(Ching-Jung Chuang),林義峰(Yi-Feng Lin) | |
| dc.subject.keyword | 甲基三甲氧基矽烷,二氧化矽氣凝膠,陶瓷膜,表面改質,真空薄膜蒸餾, | zh_TW |
| dc.subject.keyword | Methylmethoxysilane,silica aerogel,ceramic membrane,surface modification,vacuum membrane distillation, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-09-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
