請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳國慶(Kuo-Ching Chen) | |
| dc.contributor.author | Chih-Sheng Huang | en |
| dc.contributor.author | 黃智聲 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:06:02Z | - |
| dc.date.available | 2014-09-16 | |
| dc.date.copyright | 2014-09-16 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-09-12 | |
| dc.identifier.citation | [1] J. M. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, 359 (2001)
[2] 陳金銘,工業技術研究院-高能量鋰電池正負極材料技術, 2013 [3] B. Scrosati and J. Garche, Lithium Batteries: Status, Prospects and Future, J. Power Sources, 195, 2419 (2010) [4] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamore, Cycle-Life Model for Graphite-LiFePO4 Cells, J. Power Sources, 196, 3942 (2011) [5] http://www.teslamotors.com/supercharger [6] J. M. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, 359 (2001) [7] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2: A New Cathode Material for Batteries of High Energy Density, Materials Research Bulletin, 15, 783 (1980) [8] K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc., 144, 1188 (1997) [9] 陳金銘, 工業技術研究院-高能量鋰電池正負極材料技術, 2013 [10] J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, Third ed., Wiley- Interscience, Berkley (2004) [11] R. R. Agarwal, Activity and Diffusivity of Lithium Intercalated in Graphite, MS Thesis Illinois Inst. Technol., Chicago, IL (1982) [12] 劉茂煌, 工業技術研究院-儲能領域電化學之原理與應用, 2013 [13] P. Kurzweil and K. Brandt, Second Batteries-Lithium Rechargeable Systems Overview, Encyclopedia of Electrochemical Power Sources, 1 (2009) [14] G. Singh, G Ceder, and M. Bazant, Intercalation Dynamics in Rechargeable Battery Materials: General Theory and Phase-Transformation Waves in LiFePO4, Electrochemical Acta, 53, 7599 (2008) [15] D. Burch, G. Singh, G, Ceder, and M. Z. Bazant, Phase-Transformation Wave Dynamics in LiFePO4, Solid State Phenomena, 139, 95 (2008) [16] P. Bai, D. A. Cogswell, and M. Z. Bazant, Suppression of phase Transformations in LiFePO4 during Battery Discharge, Nano Letters, 11, 4890 (2011) [17] M. Takahashi, H. Ohtsuka, K. Akuto, and Y. Sakurai, Confirmation of Long-Term Cyclability and High Thermal Stability of LiFePO4 in Prismatic Lithium-Ion Cells, J. Electrochem. Soc., 152, A899 (2005) [18] Y. Bai, Y. Yin, J. Yang, C. Qing, and W. Zhang, Raman Study of Pure, C-coated and Co-doped LiFePO4: Thermal Effect and Phase Stability Upon Laser Heating, J. Raman Spectroscopy, 42, 831 (2011) [19] http://www.bcg.com/documents/file36615.pdf [20] J. Newman and W. Tiedemann, Porous-Electrode Theory with Battery Applications, AIChE Journal, 21, 25 (1975) [21] T. S. Dao, C. P. Vyasarayani, and J. McPhee, Simplification and Order Reduction of Lithium-Ion Battery Model Based on Porous-Electrode Theory, J. Power Sources, 198, 329 (2012) [22] J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, Third ed., Wiley-Interscience, Berkeley (2004) [23] G. Ning and B. N. Popov, Cycle Life Modeling of Lithium-Ion Batteries, J. Electrochem. Soc., 151, A1584 (2004) [24] M. Doyle, J. Newmans, A.S. Gozdz, C. N. Schmutz, and J. M. Tarascon, Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells, J. Electrochem. Soc., 143, 1890 (1996) [25] J. Zhang, S. Ci, H. Sharif, and M. Alahmad, Modeling Discharge Behavior of Multicell Battery, IEEE Transactions on Energy Conversion, 25, no.4 (2010) [26] X. He and J. W. Hodgson, Modeling and Simulation for Hybrid Electric Vehicle-PartI: Modeling, IEEE Transactions on Intelligent Transportation Systems, 3, no.4 (2002) [27] M. Chen, and G. A. Rincon-Mora, Accurate Electrical Battery Model Capable of Predicting Runtime and I-V performance, IEEE Transactions on Energy Conversion, 21, no.2 (2006) [28] G. J. Offer, V. Yufit, D. A. Howey, B. Wu, and N. P. Brandon, Module Design and Fault Diagnosis in Electric Vehicle Batteries, J. Power Sources., 206, 383 (2012) [29] M. S. Wu, C. Y. Lin, Y. Y. Wang, C. C. Wan, and C.R. Yang, Numerical Simulation for the Discharge Behaviors of Batteries in Series and Parallel-Connected Battery Pack, J. Electrochimica Acta, 52, 1349 (2006) [30] M. Doyle, J. P. Meyers, and J. Newman, Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries, J. Electrochem. Soc., 147, 99 (2000) [31] M. Guo, G. H. Kim, and R. E. White, A Three-Dimensional Multi-Physics Model for a Li-Ion Battery, J. Power Sources, 240, 80 (2013) [32] M. Xu, Z. Zhang, X. Wang L. Jia, and L. Yang, Two-Dimensional Electrochemical-Thermal Coupled Modeling of Cylindrical LiFePO4 Batteries, J. Power Sources, 256, 233 (2014) [33] R. E. Gerver and J. P. Meyers, Three-Dimensional Modeling of Electrochemical Performance and Heat Generation of Lithium-Ion Batteries in Tabbed Planar Configurations, J. Electrochem. Soc., 158, A835 (2011) [34] G. Ning, R. E. White, and B. N. Popov, A Generalize Cycle Life Model of Rechargeable Li-Ion Batteries, J. Electrochimica Acta, 51, 2012 (2006) [35] Y. Ye, Y. Shi and A. A.O. Tay, Electro-Thermal Cycle Life Model for Lithium Ion Phosphate Battery, J. Power Sources, 217, 509 (2012) [36] Y. Zhang and C. Y. Wang, Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode, J. Electrochem. Soc., 156, A527 (2009) [37] V. Srinivasan and C. Y. Wang, Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells, J. Electrochem. Soc., 150, A98 (2003) [38] L. O. Valoen and J. N. Reimers, Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes, J. Electrochem. Soc., 152, A882 (2005) [39] 邱冠澄,利用電化學法探討鋰離子電池組穿刺安全設計與串聯溫度管理,國立台灣大學應用力學所碩士論文(2013) [40] M. Guo and R. E. White, Thermal Model for Lithium Ion Battery Pack with Mixed Parallel and Series Configuration, J. Electrochem. Soc., 158, A1166 (2011) [41] R. Gogoana, M. B. Pinson, M. Z. Bazant, and S. E. Sarma, Mismatch in parallel connection, J. Power Sources., 252, 8 (2014) [42] V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the Development of Advanced Li-Ion Batteries: a Review, J. Energy & Environmental Science, 4, 3243 (2011) [43] N. Williard, W. He, C. Hendricks, and Michael Pecht, Lessons Learned from the 787 [44] P. Nelson, I. Bloom, K. Amine, and G. Henriksen, Design Modeling of Lithium-Ion Battery Performance, J. Power Sources, 110, 437 (2002) [45] P. Nelson, D. Dees, K. Amine, and G. Henriksen, Modeling Thermal Management of Lithium-Ion PNGV Batteries, J. Power Sources, 110, 437 (2002) [46] S. Al Hallaj, H. Maleki, J. S. hong, and J. R. Selman, Thermal Modeling and Design Considerations of Lithium-Ion Batteries, J. Power Sources, 83, 1 (1999) [47] K. Smith and C. Y. Wang, Solid-State Diffusion Limitations on Pulse Operation of a Lithium Ion Cell for Hybrid Electric Vehicles, J. Power Sources, 161, 628 (2006) [48] D. Bernard, E. Pawlikowski, and J. Newman, A General Energy Balance for Battery Systems , J. Electrochem. Soc., 132, 5 (1985) [49] V. Srinivasan and C.Y. Wang, Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells, J. Electrochem. Soc., 150, A98 (2003) [50] Y. Ye, Y. Shi, and A. A.O. Tay, Electro-Thermal Cycle Life Model for Lithium Ion Phosphate Battery, J. Power Sources, 217, 509 (2012) [51] M. Guo, G. H. Kim, and R. E. White, A Three-Dimensional Multi-Physics Model for a Li-Ion Battery, J. Power Sources, 240, 80 (2013) [52] K. C. Chiu, C. H. Lin, S. F. Yeh, Y. H. Lin C. S. Huang, and K. C. Chen, Cycle Life Analysis of Series Connected Lithium-Ion Batteries with Temperature Difference, J. Power Sources, 263, 75 (2014) [53] 邱冠澄,利用電化學法探討鋰離子電池組穿刺安全設計與串聯溫度管理,國立台灣大學應用力學所碩士論文(2013) [54] A. Jabbar and N. Khalifa, Natural Convective Heat Transfer Coefficient- a Review II. Surfaces in Two and Three Dimensional Enclosures, J. Energy Conversion and Management, 42, 505 (2001) [55] S. Miyatake, Y. Susuki, T. Hikihara, S. Itoh, and K. Tanaka, Discharge Characteristics of Multicell Lithium-Ion Battery with Nonuniform Cells, J. Power Sources, 241, 736 (2013) [56] B. Wu, V. Yufit, M. Marinescu, G. J. Offer, R. F. Martinez-Botas, and N. P. Bradon, Coupled Thermal-Electrochemical Modelling of uneven heat generation in lithium-ion battery packs, J. Power Sources, 243, 544 (2013) [57] http://www.a123systems.com/ [58] W. F. Howard and R. M. Spotnitz, Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries, J. Power Sources, 165, 887 (2007) [59] C. C. Lin, H. C. Wu, J. P. Pan, C. Y. Su, T. H. Wang, H. S. Sheu and N. L. Wu, Investigation on Suppressed Thermal Runaway of Li-ion Battery by Hyper-branched Polymer Coated on Cathode, J. Electrochimica Acta, 101, 11 (2013) [60] F. M. Wang, S. C. Lo, C. S. Cheng, J. H. Chen, B. J. Hwang and H. C. Wu, Self-polymerized Membrane Derivative of Branched Additive for Internal Short Protection of High Safety Lithium Ion Battery, J. Membrane Science, 368, 165 (2011) [61] 中華民國發明專利第99146137號:鋰電池與極版結構 [62] D. Bernard, E. Pawlikowski, and J. Newman, A General Energy Balance for Battery Systems , J. Electrochem. Soc., 132, 5 (1985) [63] V. Srinivasan and C.Y. Wang, Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells, J. Electrochem. Soc., 150, A98 (2003) [64] T. Yamauchi, K. Mizushima, Y. Satoh, and S. Yamad, Development of a Simulator for Both Property and Safety of a Lithium Secondary Battery, J. Power Sources, 136, 99 (2004) [65] T. Kawai, Numerical Analysis for Internal Short-Circuit of Lithium-Ion Batteries, 208th ECS Meeting, 70 (2005) [66] T. Kawai, Modeling for Thermal Behavior of Lithium-Ion Batteries, 210th ECS Meeting, 327 (2006) [67] M. N. Richard and J. R. Dahn, Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte I. Experimental, J. Electrochem. Soc., 146, 2068 (1999) [68] Ph. Biensan, B. Simon, J. P. Peres, A. de Guibert, M. Broussely, J. M. Bodet, and F. Perton, On safety of lithium-ion cells, J. Power Sources, 81, 906 (1999) [69] W. Lu, C. W. Lee, R. Venkatachalapathy, and J. Prakash, Electrochemical and Thermal Behavior of LiNi0.8Co0.2O2 Cathode in Sealed 18650 Li-ion cells, J. Applied Electrochem., 30, 1119 (2000) [70] R. Venkatachakapathy, C. W. Lee, W. Lu, and J. Prakash, Thermal Investigations of Transitional Metal Oxide Cathodes in Li-ion Cells, Electrochem. Communications, 2, 104 (2000) [71] R. Spotnitz and J, Franklin, Abuse Behavior of High-Power Lithium-Ion Cells, J. Power Sources, 113, 81 (2003) [72] T. D. Hatchard, D. D. MacNeil, A. Basu, and J. R. Dahn, Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells, J. Electrochem. Soc., 148, A755 (2001) [73] G. H. Kim, A Pesaran, and R. Spotnitz, A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells, J. Power Sources, 170, 476 (2007) [74] A. Jabbar and N. Khalifa, Natural Convective Heat Transfer Coeffcient - a Review II. Surfaces in Two- and Three-Dimensional Enclosures, Energy of Conversion and Management, 42, 505 (2001) [75] D. D. MacNeil and J. R. Dahn, Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte, J. Phys. Chem., 105, 4430 (2001) [76] M. Takahashi, H. Ohtsuka, K. Akuto, and Y. Sakurai, Confirmation of Long-Term Cyclability and High Thermal Stability of LiFePO4 in Prismatic Lithium-Ion Cells, J. Electrochem. Soc., 152, A899 (2005) [77] Y. Bai, Y. Yin, J. Yang, C. Qing, and W. Zhang, Raman Study of Pure, C-coated and Co-doped LiFePO4: Thermal Effect and Phase Stability Upon Laser Heating, J. Raman Spectroscopy, 42, 831 (2011) [78] P. Kurzweil and K. Brandt, Second Batteries-Lithium Rechargeable Systems Overview, Encyclopedia of Electrochemical Power Sources, 1 (2009) [79] K. Zaghib, J. Dube, A. Dallaire, K. Galoustov, A. Guerfi, M. Ramanathan, A. Benmayza, J. Prakash, A. Mauger, and C. M. Julien, Enhanced Thermal Safety and High Power Performance of Carbon-Coated LiFePO4 Olivine Cathode for Li-Ion Batteries, J. Power Sources, 219, 36 (2012) [80] 邱冠澄,利用電化學法探討鋰離子電池組穿刺安全設計與串聯溫度管理,國立台灣大學應用力學所碩士論文(2013) [81] D.D. Macdonald, Transient Techniques in Electrochemistry, Plenum Press, New York (1977) [82] M. Sluyters-Rehbach and J.H. Sluyters, in: A.J. Bard (Ed.), Electroanalytical Chemistry, 4, Marcel Dekker, New York (1970) [83] D.E. Smith, in: A.J. Bard (Ed.), Electroanalytical Chemistry, 1, Marcel Dekker, New York (1966) [84] B. Breyer and H.H. Bauer, in: P.J. Elving, I.M. Kolthoff (Eds.), Alternating Current Polarography and Tensammetry, Chemical Analysis Series, 13, Interscience, New York (1963) [85] D. D. Macdonald, Reflections on the History of Electrochemical Impedance spectroscopy, Electrochem. Acta, 51, 1376 (2006) [86] S. Rodrigues, N. Munichandraiah, and A. K. Shukla, A review of State-of-Charge Indication of Matteries by Means of A.C. Impedance Measurements [87] http://www.a123systems.com/ [88] http://www.bio-logic.info/ [89] Y. Zhang and C. Y. Wang, Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode, J. Electrochem. Soc., 156, A527 (2009) [90] B. Tribollet and J. Newman, Impedance Model for a Concentrated Solution, J. Electrochem. Soc., 131, 2780 (1984) [91] J. P. Meyers, M. Doyle, R. M. Darling, and J. Newman, The Impedance Response of a Porous Electrode Composed of Intercalation Particles, J. Electrochem. Soc., 147, 2930 (2000) [92] C. Ho, I. D. Raistrick, and R. A. Huggins, Application of AC Techniques to Study of Lithium Diffusion in Tungsten Trioxide Thin Films, J. Electrochem. Soc., 127, 343 (1980) [93] R. V. Homsy and J. Newman, An Asymptotic Solution for the Warburg Impedance of a Rotating Disk Electrode, J. Electrochem. Soc., 121, 521 (1974) [94] D. A. Scherson and J. Newman, J. Electrochem. Soc., 127, 110 (1980). [95] B. Tribollet and J. Newman,The Modulated Flow at a Rotating Disk Electrode, J. Electrochem. Soc., 130, 2016 (1983). [96] J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, Third ed., Wiley-Interscience, Berkeley (2004) [97] M. Zago, A. Casalegno, A physical model of Direct Methanol Fuel Cell anode impedance, J. Power Sources, 248, 1181 (2014) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55501 | - |
| dc.description.abstract | 近年來因為化石燃料的短缺,人們開始研究將鋰離子電池應用在電動車上,以大型鋰電池組提供電動車所需的能量來源。但大型電池組的實驗通常費時與耗去大量金錢,因此若藉由模擬的方式進行電池組效能的預測與評估,將能降低實驗所消耗的成本。本論文將針對電動車中電池組設計待解的問題做模擬與探討,以期對電動車的發展做出貢獻。本論文將研究五類問題,分別為:電池組放電效能預測、電池組溫度分布預測、電池組壽命預測、電池組安全設計、電池組狀態檢測。
針對電池組放電效能與溫度分布之研究,我們與工業技術研究院合作取得了十三串兩並共二十六顆電池之電池組實驗數據。利用我們所發展的電化學模型進行模擬,電池組放電曲線與溫度變化的實驗與模擬結果相當吻合。電池組壽命預測部分則以單顆電池壽命的實驗與模擬結果吻合,進而將預測方法應用到電池組中。 電池組的安全性設計為添加工研院所研發之材料STOBA至鋰電池中,再對電池進行穿刺試驗檢驗電池安全性,實驗結果顯示STOBA能夠有效的保護鋰電池使其不產生熱爆走之現象。接著對STOBA進行探討嘗試了解其作用機制,並利用電化學模型模擬添加STOBA後電池受穿刺試驗過程之變化。 最後是電池狀態的檢測,利用非破壞性的檢測方法:量測鋰電池阻抗頻譜,分析阻抗頻譜進而獲得電池的老化程度等等資訊。 | zh_TW |
| dc.description.abstract | Recent years, the research on the electric vehicle is increasing due to the shortage of fossil fuel. Lithium battery, which has high power density and enrgy, is a well choice as power source for electric vehicle. However, the exmperiment for studying lithium battery pack is expensive and time-consuming. Therefore, we try to analyze and predict the efficiency of battery pack by simulation to decrease the experimental cost. There are five groups of important problems, which are prediction of battery pack discharge efficiency, prediction of battery pack temperature distribution, prediction of battery pack cycle life, safety of battery pack design and detection of battery pack, about the developement of electric vehicle will be discuss in this thesis.
We have a cooperation with ITRI which offer us experimental data about battery pack to study battery pack discharge efficiency, battery pack temperature distribution and prediction of battery pack cycle life. By the electrochemical model we built, the simulation result of battery pack’s discharge curve and temperature variation has a well agreement with experimental data. ITRI developes a kind of material called STOBA, which is added in lithium battery to prevent thermal runaway during nail penetration test. According to the nail penetration experimental result, the battery with STOBA will not burn and explode. Then, we try to figure out the mechanics of STOBA and simulate the process during nail penetration test by electrochemical model. We use the nondestructive testing which is impedance spectrum measurement to detect the status of battery. By analyze the impedance spectrum, we will obtain the information about battery. It is very helpful on the battery detection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:06:02Z (GMT). No. of bitstreams: 1 ntu-103-R01543065-1.pdf: 8132661 bytes, checksum: a5d64851d06490d9d9fa62ca4076df8c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 I 中文摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XV 參數表 XVI 第1章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 4 第2章 文獻回顧及電池介紹 5 2.1 鋰離子電池發展歷史 5 2.2 電池性值介紹 6 2.3 電池電極材料 7 第3章 多孔電極理論 15 3.1 多孔電極模型介紹 15 3.2 多孔電極理論之統御方程式與邊界條件 17 3.3 利用多孔電極理論模擬鋰離子電池 22 第4章 電化學法探討電池並聯行為 28 4.1 建立三維電化學模型 29 4.2 電池並聯行為 34 4.3 並聯電路模擬結果 38 第5章 串並聯電池組溫度與壽命探討 49 5.1 實驗之電池组介紹 49 5.2 電池模組實驗與模擬比較結果 54 5.3 電池模組壽命預測 69 第6章 電池安全性設計 75 6.1 電池安全性設計 75 6.2 STOBA材料 76 6.3 穿刺試驗 77 6.4 穿刺模擬理論 78 6.5 穿刺試驗模擬 84 6.6 STOBA模擬 91 6.7 電池組安全性模擬 102 第7章 電化學交流阻抗頻譜分析 112 7.1 電化學交流阻抗頻譜分析介紹 112 7.2 以電化學法計算交流阻抗頻譜 115 7.3 模擬電化學參數對阻抗頻譜之影響 119 7.4 以交流阻抗頻譜觀察電池老化與不均勻電池並聯 134 第8章 結論與未來展望 140 8.1 結論 140 8.2 未來展望 143 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阻抗頻譜 | zh_TW |
| dc.subject | STOBA | zh_TW |
| dc.subject | 循環壽命 | zh_TW |
| dc.subject | STOBA | zh_TW |
| dc.subject | 電池並聯 | zh_TW |
| dc.subject | 電池組 | zh_TW |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | 溫度分布 | zh_TW |
| dc.subject | 阻抗頻譜 | zh_TW |
| dc.subject | 循環壽命 | zh_TW |
| dc.subject | 溫度分布 | zh_TW |
| dc.subject | 電池並聯 | zh_TW |
| dc.subject | 電池組 | zh_TW |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | impedance spectrum | en |
| dc.subject | cycle life | en |
| dc.subject | temperature distribution | en |
| dc.subject | parallel connection | en |
| dc.subject | STOBA | en |
| dc.subject | battery pack | en |
| dc.subject | lithium-ion battery | en |
| dc.title | 利用電化學法建立鋰電池模組預測模型分析交流阻抗頻譜以及並聯之行為與電池安全性設計 | zh_TW |
| dc.title | On the Parallel-Connected Li-Ion Batteries, Impedance Spectrum and Battery Safety Design by Electrochemical Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭志禹(Chih-Yu Kuo),林祺皓(Chi-Hao Lin),林揚善(Yang-Shan Lin) | |
| dc.subject.keyword | 鋰離子電池,電池組,電池並聯,溫度分布,循環壽命,STOBA,阻抗頻譜, | zh_TW |
| dc.subject.keyword | lithium-ion battery,battery pack,parallel connection,temperature distribution,cycle life,STOBA,impedance spectrum, | en |
| dc.relation.page | 143 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-09-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 7.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
