Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55490
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳安宇(An-Yeu Wu)
dc.contributor.authorYu-Hao Chenen
dc.contributor.author陳郁豪zh_TW
dc.date.accessioned2021-06-16T04:05:24Z-
dc.date.available2014-09-23
dc.date.copyright2014-09-23
dc.date.issued2014
dc.date.submitted2014-09-18
dc.identifier.citation[1] J. Y. Lu, H. Zou, and J. F. Greenleaf, “Biomedical ultrasound beam forming,” Ultrasound Med. Biol., vol. 20, pp. 403-28, 1994.
[2] VisualSonics, http://www.visualsonics.com/.
[3] http://www.terason.com/products/t2000.asp.
[4] P. C. Li, “Principles of Medical Ultrasound,” Class Notes, National Taiwan University, 2006.
[5] J. A. Jensen, “Field: a program for simulating ultrasound systems,” Med. Biol. Eng. Comp., vol. 4, suppl. 1, pt. 1; Tenth Nordic-Baltic Conference on Biomedical Imaging, pp. 351-353, 1996.
[6] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.
[7] D . P. Shattuck, M. D. Weinshenker, S. W. Smith, and O. T. von Ramm, “Explososcan: A parallel processing technique for high speed ultrasound imaging with linear phased arrays,” J. Acoust. Soc. Am., vol. 75, no. 4, pp. 1273–1282, Apr. 1984.
[8] F. Vignon and M. R. Burcher, “Capon beamforming in medical ultrasound imaging with focused beams,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 55, pp. 619-628, 2008.
[9] J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 1606-1613, Aug. 2007.
[10] G. E. Trahey and L. F. Nock, 'Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities. Part II: Effects of and correction for motion,' IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 39, pp. 496-501, 1992.
[11] C. R. Hazard and G. R. Lockwood, 'Effects of motion on a synthetic aperture beamformer for real-time 3D ultrasound,' Proc. IEEE Ultrason. Symp., pp. 1221-1224, 1999.
[12] K. L. Gammelmark and J. A. Jensen, 'Duplex synthetic aperture imaging with tissue motion compensation,' Proc. IEEE Ultrason. Symp., pp. 1569-1573, 2003.
[13] Billy Y.S.Yiu, Ivan K.H.Tsang, and Alfred C.H.Yu. “A Modified Synthetic Aperture Imaging Approach with Axial Motion Compensation” IEEE Ultrason. Symp., pp. 1254-1257, 2008.
[14] Sverre Holm and Hongxia Yao, “Improved frame rate with synthetic transmit aperture imaging using prefocused subapertures,” IEEE Ultrason. Symp., Oct. 1997.
[15] J.-y. Lu, J. Cheng, and J. Wang, “High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings high frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 53, pp. 1796-1812, 2006.
[16] J. Mann and W. Walker, “A constrained adaptive beamformer for medical ultrasound: Initial results,” in Proc. Ultrason. Symp., 2002, vol.2, pp. 1807–1810.
[17] M. Sasso and C. Cohen-Bacrie, “Medical ultrasound imaging using the fully adaptive beamformer,” in Proc. IEEE Acoustics, Speech, and Signal, (ICASSP ’05), 2005, vol. 2, pp. 489–492.
[18] Z. Wang, J. Li, and R. Wu, “Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging,” IEEE Trans. Med. Imag., vol. 24, no. 10, pp. 1308–1322, Oct. 2005.
[19] F. Vignon and M. R. Burcher, “Capon beamforming in medical ultrasound imaging with focused beams,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control, vol. 55, no. 3, pp. 619–628, Mar. 2008.
[20] S. Tie-Jun, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Trans. Ultrason., Ferroelectr. Freq. Control, vol. 33, no. 4, pp. 806–811, Aug. 1985.
[21] B. M. Asl and A. Mahloojifar, “Contrast enhancement and robustness improvement of adaptive ultrasound imaging using forward-backward minimum variance beamforming,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 4, pp. 858–867, Apr. 2011.
[22] B. M. Asl and A. Mahloojifar, 'Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.57, no.11, pp.2381-2390, Nov. 2010.
[23] S. Mehdizadeh, A. Austeng, T. F. Johansen, and S. Holm, 'Eigenspace Based Minimum Variance Beamforming Applied to Ultrasound Imaging of Acoustically Hard Tissues,' IEEE Trans. on. Medical Imaging, vol.31, no.10, pp.1912-1921, Oct. 2012.
[24] J.-F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 8, pp. 1606–1613, Aug. 2007.
[25] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore, Md: Johns Hopkins University press, 1996.
[26] T.-J. Shan and T. Kailath, “Adaptive beamforming for coherent signals and interferences,” IEEE Trans. Acoust. Speech Signal Process., vol. 33, no. 3, pp. 527–536, 1985.
[27] J.-F. Synnevag, C. I. C. Nilsen, and S. Holm, “Speckle statistics in adaptive beamforming,” in Proc. IEEE Ultrasonics Symp., Oct. 2007, pp. 1545–1548.
[28] C. C. Nilsen and I. Hafizovic, 'Beamspace adaptive beamforming for ultrasound imaging,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.56, no.10, pp.2187-2197, Oct. 2009.
[29] J.-F. Synnevag, S. Holm, and A. Austeng, “A low complexity data dependent beamformer,” in Proc. IEEE Ultrasonics Symp., 2008, pp. 1084–1087.
[30] B. M. Asl and A. Mahloojifar, “A Low-Complexity Adaptive Beamformer for Ultrasound Imaging Using Structured Covariance Matrix,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 4, pp. 660–667, Apr. 2012.
[31] R. Mallart and M. Fink, “The van Cittert–Zernike theorem in pulse echo measurements,” J. Acoust. Soc. Am., vol. 90, no. 5, pp. 3721-3732, Nov. 1991.
[32] J.-F. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 9, pp. 1868–1879, Sep. 2009.
[33] D. R. Fuhrmann, “Application of Toeplitz covariance estimation to adaptive beamforming and detection,” IEEE Trans. Signal Process., vol. 39, no. 10, pp. 2194–2198, Oct. 1991.
[34] T. Kailath and A. H. Sayed, Eds. Fast Reliable Algorithms for Matrices With Structure. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999.
[35] J. Sherman and W. J. Morrison, (1949). 'Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column or a Given Row of the Original Matrix (abstract)'. Annals of Mathematical Statistics 20: 621.
[36] S. Haykin, “Adaptive Filter Theory,” 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2002.
[37] B. D. Carlson, “Covariance matrix estimation errors and diagonal loading in adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 4, pp. 397–401, 1988.
[38] J. A. Jensen, 'Field: a program for simulating ultrasound systems,' Medical and Biological Engineering and Computing, vol. 34, pp.351–353, 1996.
[39] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore, Md: Johns Hopkins University press, 1996.
[40] W. F. Trench, “An algorithm for the inversion of finite Toeplitz matrices,” SIAM J. Appl. Math., vol. 12, pp. 515–522, Sep. 1964.
[41] S. Holm and H. Yao, 'Method and apparatus for synthetic transmit aperture imaging,' U.S. Patent 5 951 479, Sep. 14, 1999.
[42] D. P. Shattuck, M. D. Weinshenker, S. W. Smith, and O. T. von Ramm, 'Explososcan: A parallel processing technique for high speed ultra- sound imaging with linear phased arrays,' J. Acoust. Soc. Amer., vol. 75, no. 4, pp. 1273-1282, Apr. 1984.
[43] G. R. Lockwood, J. R. Talman, and S. S. Brunke, 'Real-time 3-D ul- trasound imaging using sparse synthetic aperture beamforming,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 45, pp. 980-988, 1998.
[44] M. Karaman, P. C. Li, and M. O'Donnell, 'Synthetic aperture imaging for small scale systems,' IEEE Trans. Ultrason., Ferroelectr.,, Freq. Control, vol. 42, pp. 429-442, 1995.
[45] G. E. Trahey and L. F. Nock, 'Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities. Part II: Ef- fects of and correction for motion,' IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 39, pp. 496-501, 1992.
[46] C. R. Hazard and G. R. Lockwood, 'Effects of motion on a synthetic aperture beamformer for real-time 3D ultrasound,' in Proc. IEEE Ul- trason. Symp., 1999, pp. 1221-1224.
[47] K. L. Gammelmark and J. A. Jensen, 'Duplex synthetic aperture imaging with tissue motion compensation,' in Proc. IEEE Ultrason. Symp., 2003, pp. 1569-1573.
[48] B. Y. S. Yiu, I. K. H. Tsang, and A. C. H. Yu, 'A modified synthetic aperture imaging approach with axial motion compensation,' in IEEE Ultrason. Symp., Nov. 2-5, 2008, p. 1254, 1257.
[49] Y. H. Chen, K. Y. Ho, and A. Y. Wu, 'Coherent image herding of inhomogeneous motion compensation for synthetic transmit aperture in ultrasound image,' in Proc. IEEE Workshop Signal Process. Syst. (SiPS), Oct. 2012, pp. 254-257.
[50] K. Y. Ho, Y. H. Chen, C. Z. Zhan, and A. Y. Wu, 'VLSI implementation of real-time motion compensation beamforming in synthetic transmit aperture imaging,' in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 19-23, 2013, p. 1893, 1896.
[51] T. Loupas, R. B. Peterson, and R. W. Gill, 'Experimental evaluation of velocity and power estimation for ultrasound blood-flow imaging, by means of a 2-dimensional autocorrelation approach,' IEEE Trans. Ul- trason., Ferroelectr., Freq. Control, vol. 42, no. 4, pp. 689-699, 1995.
[52] C. Kasai, 'Real-time two-dimensional blood-flow imaging using an autocorrelation technique,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 33, no. 1, p. 94, 1986.
[53] F. Viola and W. F. Walker, 'A comparison of the performance of time-delay estimators in medical ultrasound,' IEEE Trans. Ultrason., Fer- roelectr., Freq. Control, vol. 50, no. 4, pp. 392-401, 2003.
[54] S. Langeland, J. D'hooge, H. Torp, B. Bijnens, and P. Suetens, 'Comparison of time-domain displacement estimators for two-dimensional RF tracking,' Ultrasound Med. Biol., vol. 29, no. 8, pp. 1177-1186, 2003.
[55] R. Z. Azar and S. E. Salcudean, 'Motioin estimation in ultrasound images using time domain cross correlation with prior estimation,' IEEE Trans. Biomed. Eng., vol. 53, no. 10, pp. 1990-2000, 2006.
[56] A. Basarab, P. Gueth, H. Liebgott, and P. Delachartre, 'Phase-based block matching applied to motion estimation with unconventional beamforming strategies,' Ultrasound Med. Biol., vol. 56, no. 5, pp. 945-957, 2009.
[57] F. Viola and W. F. Walker, 'A spline-based algorithm for continuous time-delay estimation using sampled data,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 52, no. 1, pp. 80-93, 2005.
[58] G. F. Pinton and G. E. Trahey, 'Continuous delay estimation with polynomial splines,' IEEE Trans. Ultrason., . Ferroelectr., Freq. Control, vol. 53, no. 11, pp. 2026-2035, 2006.
[59] J. A. Jensen, 'Field: A program for simulating ultrasound systems,' Med. Biologic. Eng. Comput., vol. 34, pp. 351-353, 1996.
[60] J. S. Jeong, J. S. Hwang, M. H. Bae, and T. K. Song, 'Effects and limitations of motion compensation in synthetic aoerture techniques,' in Proc. IEEE Ultrason. Symp., Oct. 2000, vol. 2, p. 1759, 1762.
[61] A. Kassem, J. Wang, A. Khouas, M. Sawan, S. Tabikh, and M. Boukadoum, 'Variable delay CMOS implementation for ultrasonic beamforming,' in Proc. 14th Int. Conf. Microelectron., Dec. 11-13, 2002, p. 127, 130.
[62] B. G. Tomov and J. A. Jensen, 'Delay generation methods with reduced memory requirements,' in Proc. SPIE Conf. Med. Imag., 2003, vol. 5035, pp. 491-500.
[63] S. I. Nikolov et al., 'Recursive delay calculation unit for parametric beamformer,' in Proc. SPIE Conf. Med. Imag., 2006, vol. 6147, pp. 61470D1-61470D12.
[64] S. I. Nikolov and J. A. Jensen, 'Fast parametric beamformer for synthetic aperture imaging,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 55, no. 8, pp. 1755-1767, 2008.
[65] H. T. Feldkamper et al., 'Low power delay calculation for digital beamforming in handheld ultrasound systems,' in Proc. IEEE Int. Ultrason., Symp., Oct. 2000, vol. 2, pp. 1763-1766.
[66] K. E. Thomenius, 'Evolution of ultrasound beamformers,' in Proc. IEEE Ultrason. Symp., 1996, vol. 2, pp. 1615-1621.
[67] D. K. Peterson and G. S. Kino, 'Real-time digital image reconstruction: A description of imaging hardware and an analysis of quantization er- rors,' IEEE Trans. Sonics Ultrason., pp. 337-351, 1984.
[68] K. Jeon, M. H. Bae, S. B. Park, and S. D. Kim, 'An efficient real time focusing delay calculation in ultrasonic imaging systems,' Ultrason. Imag., vol. 16, pp. 231-248, 1994.
[69] B. G. Tomov and J. A. Jensen, 'A new architecture for a single-chip multi-channel beamformer based on a standard FPGA,' in Proc. IEEE Ultrason. Symp., 2001, pp. 1529-1533.
[70] S. Holm and K. Kristoffersen, 'Analysis of worst-case phase quantization sidelobes in focused beamforming,' IEEE Trans. Ultrason., Fer- roelectr., Freq. Control, vol. 39, pp. 593-599, 1992.
[71] C. H. Lin and A. Y. Wu, 'Mixed-scaling-rotation CORDIC (MSR-CORDIC) algorithm and architecture for scaling-free high-per- formance rotational operations,' IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 11, pp. 2385-2396, Nov. 2005.
[72] A. Y. Wu and C. S. Wu, 'A unified view for vector rotational CORDIC algorithms and architectures based on angle quantization approach,' IEEE Trans. Circuits Syst. I, Fund. Theory Appl., vol. 49, no. 10, pp. 1442-1456, Oct. 2002.
[73] C. S. Wu, A. Y. Wu, and C. H. Lin, 'A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes,' IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, no. 9, pp. 589-601, Sep. 2003.
[74] J. A. Jensen, O. Holm, L. J. Jensen, H. Bendsen, H. M. Pedersen, K. Salomonsen, J. Hansen, and S. Nikolov, 'Experimental ultrasound system for real-time synthetic imaging,' in Proc. IEEE Ultrason. Symp., 1999, vol. 2, pp. 1595-1599.
[75] R. Thomson, 'Transverse and longitudinal resolution of the synthetic aperture focusing technique,' Ultrasonics, pp. 9-15, 1984.
[76] M. O'Donnell and L. J. Thomas, 'Efficient synthetic aperture imaging from a circular apertur with possible application to catheter-based imaging,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 39, pp. 366-380, 1992.
[77] G. E. Trahey and L. F. Nock, 'Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities—Part 1: Basic principles,' IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 39, pp. 489-495, 1992.
[78] S. Holm and H. Yao, 'Improved framerate with synthetic transmit aperture imaging using prefocused subapertures,' in Proc. IEEE Ultrason. Symp., Oct. 1997, vol. 2, pp. 1535-1538.
[79] P.-C. Li and M.-J. Chen, 'Strain compounding: A new approach for speckle reduction,' IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 49, no. 1, pp. 39-46, Jan. 2002.
[80] D. L. Donoho, “Compressed sensing,” IEEE Trans. on Info. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55490-
dc.description.abstract超音波影像(ultrasonic imaging)系統可以提供生理組織,血流等診療資訊。相比於其他醫用影像系統如X光、電腦斷層掃描和核磁共振成像等,超音波影像系統具有低成本、非侵入性(non-invasiveness)、無放射性、高顯像速率(Frame Rate)以及可攜式等特性,所以是一種被廣泛使用的造影方式。隨著VLSI及製程技術的演進,可攜式超音波影像系統在近十幾年來逐漸成為重要的趨勢,提升病患就診方便性也降低病患的痛苦;此外,可攜式系統在緊急救護上更扮演著不可或缺的重要角色,能大幅度的提升存活率。
目前,超音波系統中最主要的應用為波束成型(beamforming)技術,用以產生B模式(B mode)成像以表達接受訊號的功率強度而形成生理組織影像。由於超音波的自然特性,波束成像對於接收訊號而言,相當重要。其中,最重要且也最古老的波束成像方法即是利用延遲和加總(delay-and-sum)將收集到的訊號作整理以及凝聚。由於傳統的波束成像方法產生的影像其影像解析度並不理想,因此可適性最小變異無失真響應(minimum variance distortionless response, MVDR/MV) 演算法近年來被廣泛的應用在醫療領域上來提升波束成像的影像品質。但是可適性權重演算法的高計算複雜度使得其演算法很難用在超音波系統上,所以如何設計出低複雜度的可適性權重演算法變成一個重要的研究趨勢。
波束成像方法可概括分類為真實孔徑(Real Aperture)以及合成孔徑(Synthetic Aperture)。相較起真實孔徑,合成孔徑擁有較低的複雜度和成本,因此適用於可攜式高速超音波成像系統。雖然合成孔徑擁有上述特性,但由於合成孔徑的輸出影像是疊加處理多次探頭激發的影像資料而成,所以若是在合成孔徑成像的過程中目標物體有位移現象,會在影像資料間產生非同調現象(Inhomogeneous)。在正常診療情況下,受測者可藉由短時間閉氣而減少位移現象,或是經由現存的離線(Off-line)系統位移補償演算法來進行修正。然而當應用在救護車,戰場或是孩童身上時,位移現象(motion artifact)將會難以避免而影響影像品質甚鉅。
本論文的研究主題主要有三個部分,第一部分首先針對用於可適性權重的演算法提出改進,利用超音波信號在計算MV時所需的樣本共變異數矩陣(sample covariance matrix, SCM)具有空間穩定(spatial stationarity)的特性,提出一個近似樣本共變異數矩陣(Approximate SCM)。接著再使用矩陣求逆引理(matrix inverse lemma)來推導出一個不用直接使用反矩陣的MV公式來降低傳統計算MV的計算量。相較於目前文獻可維持相近的影像品質卻可以大幅降低MV計算量從O(L3)到O(L)。在本論文的第二部分中,對於合成孔徑成像有非同調現象的產生提出一個即時二維位移補償演算法。此演算法運用合成發射孔徑的空間特性來估計位移量,大幅降低其運算複雜度,並讓系統產生高品質的影像。本論文的第三部分以硬體實現二維位移補償演算法的演算法架構,並提出一個適用於線性陣列(linear array)的低複雜度延遲加總 (delay-and-sum)架構。所提出的波束成像引擎可達到即時成像,畫面更新率為42 fps (frames per second)。
zh_TW
dc.description.abstractUltrasonic imaging system provide diagnostic information like tissue images and blood velocity. Compared to other medical imaging systems such as X-ray, computed tomography and magnetic resonance imaging, ultrasonic imaging system has features like non-invasive, non-radioactive, low cost, high frame rate and portable. With the progress of VLSI technique, portable ultrasound imaging systems have become a trend for tens of years. They are easily carried to where patients are, which largely decrease the inconvenience and pain for patients. Moreover, portable systems become more indispensable in supporting immediate diagnosis for emergency rescue to increases the survival rate.
Currently, beamforming is the main applications in ultrasound system to generate the B mode imaging which expresses the power of the received echo. Since the natural characteristics of the propagation wave, beamforming plays a vital role to focus the received echoes. The oldest but the most important beamforming method is to delay and sum for received echoes alignment. Since DAS beamformer has a wide main lobe and higher sidelobe levels, adaptive minimum variance directionless response (MVDR)-based beamformers, or also known as MV-based beamformers, are proposed to enhance the image quality of ultrasound imaging. However, it is not suitable for MV beamformer to implement in ultrasound imaging system due to its high computational complexity. Therefore, how to design a low-complexity MV beamformer become an important research issue.
Beamforming could be roughly classified into real aperture and synthetic aperture. Compared to real aperture, synthetic aperture is more suitable in high frame rate ultrasound imaging system due to lower complexity and cost. However, the output image of synthetic aperture is formed with accumulating series of low resolution images (LRIs) which is obtained from multiple probes, therefore it is susceptible to motion, which will cause the inhomogeneous LRIs. In the normal clinics, motion can be reduced by holding breath or compensated by existing off-line algorithm. However, when the system is used on the ambulance, battlefield, or children, motion is difficult to avoid and it will degrade the image quality severely.
There are three main topics in this work. In the first part, the low-complexity MV beamformer is proposed to reduce the computational complexity of traditional MV beamformer. We applied Approximate Sample Covariance Matrix (ASCM) and the matrix inversion lemma to derive a new formula to perform MV beamforming without computing matrix inversion. Compared with traditional MV beamformer, the proposed method reduce the computational complexity from O(L3) to O(L) with similar image quality. In the second part of this work, a low-complexity two-dimensional motion compensation algorithm is proposed. The proposed method can reduce computational complexity significantly by geometry characteristics of synthetic transmit aperture, and generate high quality images. In the third part, a low-complexity linear array delay-and-sum architecture is proposed. The hardware of the proposed algorithms is also implemented in 90 nm technology. The implementation results of beamforming engine have 42 fps (frames per second).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:05:24Z (GMT). No. of bitstreams: 1
ntu-103-F98943021-1.pdf: 4259195 bytes, checksum: fb3d684a6caf08d8b7b073049f2ad210 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsChapter 1 Introduction…………………………………………………………1
1.1 Overview of Beamforming Processing in Ultrasonic Imaging Systems….…..1
1.1.1 background………………………………………….…………………….1
1.1.2 Methods of imaging……………….………...…………………………….3
1.1.3 Image quality factor……………….………...…………………………….5
1.2 Motivation and Contributions…...……………………………………………8
1.3 Dissertation Organization…………………………………………………...13
Chapter 2 Ultrasound Imaging System………………………………………...14
2.1 Principles of Medical Ultrasound…………….……………………………..14
2.1.1 Characteristics of ultrasound wave……………….……………………...14
2.1.1 Digital ultrasound imaging system………….…….……………………...19
2.2 High Frame Rate Imaging System………………………………………….25
2.3 Summary……………………………………………………………………27
Chapter 3 Low-Complexity Matrix-Inversion-Free Minimum Variance (MIFMV) Beamformer……………………………….…….…………………..29
3.1 Motivation…………………………………………………………………29
3.2 Minimum Variance (MV) Beamformer………………………….…..….31
3.3 Proposed Low-Complexity MIFMV beamforming…………...…………….35
3.4 Analysis of Complexity……………………………………….…………….40
3.5 Simulation Results………………………………………………….……….43
3.5.1 Point Targets Simulations………………….….……………………...44
3.5.2 Cyst Phantom Simulations.………………….….……………………...45
3.6 Experimental Results……………………………………………….……….46
3.6.1 Carcinoma……………………….………….….……………………...47
3.6.2 Cyst ……………………………………….….……………………...48
3.7 Summary…………………………………………………………………..49
Chapter 4 Motion Compensation Method for Synthetic Transmit Aperture…………………………………………………………………………50
4.1 Motivation…………………………………………………………………50
4.2 Motion Scheme in Synthetic Transmit Aperture………….……………….53
4.3 Related Work of Motion Compensation Algorithm……………………….54
4.3.1Two-Dimensional Motion Compensation in Synthetic Aperture Imaging54
4.3.2 Axial Motion Compensation in Synthetic Aperture Imaging.………….57
4.4 Proposed Two-dimensional Motion Compensation Algorithm……………..60
4.4.1 Axial Motion Estimation…………………………………………………60
4.4.2 Two-dimensional Motion Estimation………………………….……….62
4.4.3 Motion Compensation………………………………………..………….63
4.5 Analysis of the Proposed Algorithm…………………………..……………65
4.5.1 Comparing STA with the conventional beamforming system for SNR performance…………………………………………………………………65
4.5.2 Frame Rate Analysis…………………………………………….……….67
4.5.3 Complexity Analysis….……………………………………..………….68
4.5.4 Non-constant Motion Velocity Environment Analysis…………….…...70
4.6 Simulation Results and Performance Analysis……………………………71
4.6.1 Performance of the Axial Motion Compensation………………………72
4.6.2 Performance of the Two Dimension Motion Compensation………….….74
4.6.3 Performance of the Non-Constant Motion Velocity for Axial Motion Estimation……………………………………………………………………76
4.7 Summary…………………………………………………………………..77
Chapter 5 Architectural Design and VLSI Implementation of High-frame-rate Beamformer……………………………………………….……………….78
5.1 Overall system and parameter specification………………………………...78
5.2 Architectural Design of Beamforming Engine……………….……………..79
5.2.1 Demodulation……………………………………………………..79
5.2.2 Proposed Motion Compensation Generator…………….………..80
5.2.3 Proposed Low-Complexity Delay Generator………………………82
5.3 VLSI Implementation………………………………………………….……87
Chapter 6 Conclusions and Future Works…………………………………90
6.1 Conclusions…………………………………………………………………90
6.3 Future Works.……………………………………………………………..….92
Bibliography…………………………………………………………………...94
dc.language.isoen
dc.subject低複雜度zh_TW
dc.subject架構zh_TW
dc.subject波束成像zh_TW
dc.subject超音波zh_TW
dc.subjectArchitectureen
dc.subjectUltrasounden
dc.subjectlow complexityen
dc.subjectbeamformeren
dc.title適用於超音波系統之低複雜度波束成像引擎演算法及架構設計zh_TW
dc.titleAlgorithm and Architectural Design of Low-Complexity Beamforming Engines for Ultrasound Systemsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee李百祺(Pai-Chi Li),沈哲州(Che-Chou Shen),林隆君(Long-Jun Lin),黃元豪(Yuan-Hao Huang),黃穎聰(Yin-Tsung Hwang)
dc.subject.keyword超音波,低複雜度,波束成像,架構,zh_TW
dc.subject.keywordUltrasound,low complexity,beamformer,Architecture,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2014-09-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved