請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55487完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Po-Hao Hsiao | en |
| dc.contributor.author | 蕭伯豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:05:14Z | - |
| dc.date.available | 2017-09-23 | |
| dc.date.copyright | 2014-09-23 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-09-23 | |
| dc.identifier.citation | [1] T.-E. Tseng, A.-S. Liu, P.-H. Hsiao, C.-M. Huang, and L.-C. Fu, “Real-time
people detection and tracking for indoor surveillance using multiple top-view depth cameras,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014. [2] R. Min, J. Choi, G. Medioni, and J. Dugelay, “Real-time 3d face identification from a depth camera,” in International Conference on Pattern Recognition (ICPR), pp. 1739–1742, Nov 2012. [3] M. Tapaswi, M. Bauml, and R. Stiefelhagen, “Knock! knock! who is it? probabilistic person identification in tv-series,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2658–2665, 2012. [4] A. Jain, L. Hong, and S. Pankanti, “Biometric identification,” Commun. ACM, vol. 43, Feb. 2000. [5] R. Nakatani, D. Kouno, K. Shimada, and T. Endo, “A person identification method using a top-view head image from an overhead camera,” JACIII, pp. 696–703, 2012. [6] I. B. Barbosa, M. Cristani, A. Del Bue, L. Bazzani, and V. Murino, “Re-identification with rgb-d sensors,” in ECCV Workshops and Demonstrations, pp. 433–442, 2012. [7] Y.-L. Wei and C. H. Lin, “Single-shot person re-identification by gaussian mixture model of weighted color histograms,” in International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 47–50, 2013. [8] C. Nakajima, M. Pontil, B. Heisele, and T. Poggio, “Full-body person recognition system,” Pattern Recognition, vol. 36, no. 9, pp. 1997 – 2006, 2003. [9] Y.-C. Chang, C.-K. Chiang, and S.-H. Lai, “Single-shot person re-identification based on improved random-walk pedestrian segmentation,” in International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 1–6, 2012. [10] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002. [11] S. Liao, G. Zhao, V. Kellokumpu, M. Pietikainen, and S. Li, “Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1301–1306, June 2010. [12] P. Tome, J. Fierrez, R. Vera-Rodriguez, and M. S. Nixon, “Soft biometrics and their application in person recognition at a distance,” IEEE Transactions on Information Forensics and Security, vol. 9, pp. 464–475, March 2014. [13] N. Kirchner, A. Alempijevic, and A. Virgona, “Head-to-shoulder signature for person recognition,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 1226–1231, 2012. [14] D. Kouno, K. Shimada, and T. Endo, “Person identification using top-view image with depth information,” in ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD), pp. 140–145, 2012. [15] V. John, G. Englebienne, and B. Krose, “Person re-identification using height-based gait in colour depth camera,” in IEEE International Conference on Image Processing (ICIP), pp. 3345–3349, Sept 2013. [16] S. Bak, E. Corvee, F. Bremond, and M. Thonnat, “Boosted human re-identification using Riemannian manifolds,” Image and Vision Computing, 2011. [17] L. Bazzani, M. Cristani, A. Perina, and V. Murino, “Multiple-shot person re- identification by chromatic and epitomic analyses,” Pattern Recognition Letters, 2012. [18] M. Isard and A. Blake, “Condensation - conditional density propagation for visual tracking,” International Journal of Computer Vision, vol. 29, pp. 5–28, 1998. [19] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non- gaussian bayesian state estimation,” IEEE Proceedings on Radar and Signal Processing, vol. 140, pp. 107–113, Apr 1993. [20] M. S. Arulampalam, S. Maskell, and N. Gordon, “A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, 2002. [21] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo sampling methods for bayesian filtering,” Statistic and Computing, vol. 10, no. 3, pp. 197–208, 2000. [22] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamic systems,” Journal of the American Statistical Association, vol. 93, pp. 1032–1044, 1998. [23] Y.-Q. Wu, “30 years(1962-1992) of the developments in threshold selection methods in image processing,” Journal of Data Acquisition and Procession, pp. 193–201, 1993. [24] V. N. Vapnik, “The nature of statistical learning theory,” 1995. [25] C. Cortes and V. Vapnik, “Support-vector networks,” in Machine Learning, pp. 273–297, 1995. [26] A. Fitzgibbon and R. B. Fisher, “A buyer’s guide to conic fitting,” in British Machine Vision Conference, pp. 513–522, 1995. [27] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust features (surf),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346 – 359, 2008. [28] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proceedings of Fourth Alvey Vision Conference, pp. 147–151, 1988. [29] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” International Journal of Computer Vision, vol. 59, pp. 167–181, Sept. 2004. [30] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, “Human skeleton tracking from depth data using geodesic distances and optical flow,” Image Vision Computing, vol. 30, pp. 217–226, Mar. 2012. [31] “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. [32] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. [33] H. Ling and K. Okada, “Diffusion distance for histogram comparison,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2006. [34] H. Ling and K. Okada, “An efficient earth mover’s distance algorithm for robust histogram comparison,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 840–853, May 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55487 | - |
| dc.description.abstract | 在這篇論文中,我們提出了一套新的人類識別方式,希望透過在天
花板上所架設的俯視深度相機所得到的生物特徵可以完成室內人員的 識別。在最一開始從深度相機得到結果我們會在前置作業中先透過背 景相減,來得到不屬於背景的部分,接著我們會透過座標軸的轉換修 正相機中物體的形變。透過人形的偵測我們會先將在前景中不屬於人 類的部分去除,針對偵測的結果我們會從深度影像中所得到的生物特 徵所得到的特徵向量透過支持向量機的方式去進行室內的人員識別, 對於識別的結果透過粒子濾波器去追蹤人形。我們所提出的架構有以 下三項優點: 1) 偵測器可以即時挑選出正確的人形使識別更加有效率。 2) 可以對於影像中出現的多個人形進行同時識別 3) 透過追蹤器的加 入,我們可以抵抗高度變化或劇烈形變。 在結果中我們展示了系統的準確程度,我們就人員辨識成功率,透 過混淆矩陣的方式作為實驗的呈現,驗證了整個系統的有效性。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a novel person identification system, hoping to
identify members at indoor environment by using the biological feature obtained by top-view depth camera. In the beginning, we do the background subtraction from the original depth information image and get the foreground object. After extracting the foreground image we will use a simple mapping function from camera coordinate to the world coordinate. A top-view human detector is used to understand which foreground object is really human. The SVM classifier will be applied to identify people after the detection process. In the end, the SIR particle filter will be utilized to track the human. There are three advantages of our framework: 1) the detector can pick up true human shape in real-time which can make our identification process more effective, 2) our proposed person identification system can simultaneously identify multiple people in the same time, 3) according to the addition of the tracker, we can tolerate height variation and human shape distortion. At last, in the experimental results, we use the confusion matrix to evaluate effectiveness of our person identification process, and successfully validates the accuracy of the system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:05:14Z (GMT). No. of bitstreams: 1 ntu-103-R01921013-1.pdf: 12733911 bytes, checksum: 98c4cb4cb23aa36d7b71215493667b64 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract iv Table of Contents v List of Figures viii List of Tables x 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Single shot identification . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Multiple shot identification . . . . . . . . . . . . . . . . . . . . . 5 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries 8 2.1 Bayesian Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Minimum Mean Square Error (MMSE) . . . . . . . . . . . . . . 11 2.1.2 Maximum a Posteriori (MAP) . . . . . . . . . . . . . . . . . . . 11 2.1.3 Maximum Likelihood (ML) . . . . . . . . . . . . . . . . . . . . 12 2.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Sequential Importance Sampling (SIS) Particle Filter . . . . . . . 13 2.2.2 Resampling and degeneracy problem . . . . . . . . . . . . . . . 15 2.2.3 Sampling Importance Resampling (SIR) Particle Filter . . . . . . 16 2.2.4 Impoverishment phenomenon . . . . . . . . . . . . . . . . . . . 16 2.3 Otsu’s Method based Segmentation . . . . . . . . . . . . . . . . . . . . . 17 2.4 Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 Objective of SVM . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 General form of SVM . . . . . . . . . . . . . . . . . . . . . . . 20 3 System Design and Image Preprocessing 23 3.1 Camera Environment Setting . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Image Stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Human Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Human Identification and Tracking Methodology 32 4.1 Biological Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 Human height and acromial height . . . . . . . . . . . . . . . . . 34 4.1.2 Human volume and bins of depth histogram . . . . . . . . . . . . 35 4.2 Human Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 Human Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 Particle Filter based Human Tracking . . . . . . . . . . . . . . . 40 4.3.2 Tracking-by-Detection with Identification scheme . . . . . . . . 43 5 Experiments 46 5.1 Environment Description . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Datasets Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3 Results of Classifier and Biometric Feature . . . . . . . . . . . . . . . . 48 5.4 Identification with Tracking Processing . . . . . . . . . . . . . . . . . . 51 6 Conclusion 58 References 60 | |
| dc.language.iso | en | |
| dc.subject | 粒子濾波器 | zh_TW |
| dc.subject | 人員識別 | zh_TW |
| dc.subject | 生物特徵 | zh_TW |
| dc.subject | Human identification | en |
| dc.subject | biological feature | en |
| dc.subject | particle filter | en |
| dc.title | 利用多台俯視深度相機進行室內人員識別與追蹤之監視系統 | zh_TW |
| dc.title | Person Identification with Tracking System for Indoor Surveillance Using Multiple Top-view Depth Cameras | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳祝嵩(Chu-Song Chen),陳永耀(Yung-Yaw Chen),范欽雄(Chin-Shyurng Fahn),連豊力(Feng-Li Lian) | |
| dc.subject.keyword | 人員識別,生物特徵,粒子濾波器, | zh_TW |
| dc.subject.keyword | Human identification,biological feature,particle filter, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-09-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 12.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
