Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55485
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力
dc.contributor.authorChao-Liang Chengen
dc.contributor.author鄭兆良zh_TW
dc.date.accessioned2021-06-16T04:05:08Z-
dc.date.available2020-02-03
dc.date.copyright2015-02-03
dc.date.issued2014
dc.date.submitted2014-09-23
dc.identifier.citation[1: Sun et al. 2006]
Zehang Sun, George Bebis, and Ronald Miller, “On-road vehicle detection: a review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 5, pp. 694-711, May 2006.
[2: Foucher et al. 2011]
Philippe Foucher, Yazid Sebsadji, Jean-Philippe Tarel, Pierre Charbonnier, and Philippe Nicolle, “Detection and Recognition of Urban Road Markings Using Images,” in Proceedings of IEEE International Conference in Intelligent Transportation Systems, Washington, DC, USA, pp. 1747-1752, October 5-7, 2011.
[3: Wang & Lien 2008]
Chi-Chen Raxle Wang and Jenn-Jier James Lien, “Automatic Vehicle Detection Using Local Features—A Statistical Approach,” IEEE Transactions on Intelligent Transportation Systems, Vol. 9, No. 1, pp. 83-96, March 2008.
[4: Sivaraman & Trivedi 2010]
Sayanan Sivaraman and Mohan Manubhai Trivedi, “A General Active-Learning Framework for On-Road Vehicle Recognition and Tracking,” IEEE Transactions on Intelligent Transportation Systems, Vol. 11, No. 2, pp. 267-276, June 2010.
[5: Sivaraman & Trivedi 2012]
Sayanan Sivaraman and Mohan Manubhai Trivedi, “Real-Time Vehicle Detection Using Parts at Intersections,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems, Anchorage, Alaska, USA, pp. 1519-1524, September 16-19, 2012.
[6: Jazayeri et al. 2011]
Amirali Jazayeri, Hongyuan Cai, Jiang Yu Zheng, and Mihran Tuceryan, “Vehicle Detection and Tracking in Car Video Based on Motion Model,” IEEE Transactions on Intelligent Transportation Systems, Vol. 12, No. 2, pp. 583-595, June 2011.
[7: Xiong & Ding 2012]
Bin Xiong and Xiaoqing Ding, “A Generic Object Detection Using a Single Query Image Without Training,” Tsinghua Science and Technology, Vol. 17, No. 2, pp. 194-201, April 2012.
[8: Rosebrock & Rilk 2012]
Dennis Rosebrock and Markus Rilk, “Real-time Vehicle Detection with a Single Camera Using Shadow Segmentation and Temporal Verification,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, pp. 3061-3066, Oct. 7-12, 2012.
[9: Karaduman et al. 2012]
O. Karaduman, H. Eren, H. Kurum, and M. Celenk, “Approaching Car Detection via Clustering of Vertical-Horizontal Line Scanning Optical Edge Flow,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems, Anchorage, Alaska, USA, pp. 502-507, September 16-19, 2012.
[10: Zheng & Liang 2009]
Wei Zheng and Luhong Liang, “Fast Car Detection Using Image Strip Features,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida, USA, pp. 2703-2710, June 20-25, 2009.
[11: Li et al. 2013]
Ye Li, Bo Li, Bin Tian, and Qingming Yao, “Vehicle Detection Based on the AND─OR Graph for Congested Traffic Conditions,” IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 2, pp. 984-993, June 2013.
[12: Song & Nevatia 2005]
Xuefeng Song and Ram Nevatia, “A Model-Based Vehicle Segmentation Method for Tracking,” in Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, Vol. 2, pp. 1124-1131, October 17-21, 2005.
[13: Gonzalez & Woods 2008]
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Editor: S. G. Miaou, Taiwan: Pearson, 2008.
[14: Liu et al. 2013]
Z. Liu, D. Liu and T. Chen, “Vehicle Detection and Tracking With 2D Laser Range Finders,” 6th International Congress on Image and Signal Processing (CSIP), Hangzhou, China, Vol. 2, pp. 1006-1013, December 16-18, 2013.
[15: Vinoharan et al. 2012]
V. Vinoharan, A. Ramanan and S. R. Kodituwakku,“A Wheel-Based Side-view Car Detection using Snake Algorithm,” IEEE 6th International Conference on Information and Automation for Sustainability (ICIAfS), Beijing, China, pp. 185-189, September 27-29, 2012.
[16: Tan et al. 2011]
F. Tan, L. Li, B. Cai and D. Zhang,“Shape Template Based Side-View Car Detection Algorithm,” 3rd International Workshop on Intelligent Systems and Applications (ISA), Wuhan, China, pp. 1-4, May 28-29, 2011.
[17: Jim et al. 2011]
J. Jin, D. Kim, J. H. Song and V. D. Nguyen,“Hardware Architecture Design for Vehicle Detection Using a Stereo Camera,” in Proceedings of 11th International Conference on Control, Automation and Systems, KINTEX, Gyeonggi-do, Korea, pp. 1761-1765, October 26-29, 2011.
[18: Zheng et al. 2013]
Z. Zheng, G. Zhou, Y. Wang, X. Li, X. Wang and L. Jiang, “A Novel Vehicle Detection Method With High Resolution Highway Aerial Image,” IEEE journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6, No. 6, pp. 2338-2343, December 2013
[19: Kuehnle 1991]
A. Kuehnle, “Symmetry–Based Recognition for Vehicle Rears,” Pattern Recognition Letters, Vol. 12, pp. 246-258, 1991
[20: Crisman & Thorpe 1993]
J. D. Crisman and C. E. Thorpe, “SCARF: A Color Vision System that Tracks Roads and Intersections,” IEEE Transaction on Robotics and Automation, Vol. 9, Issue. 1, pp. 49-58, February 1993
[21: Mori & Charkai 1993]
H. Mori and N. Charkai, “Shadow and Rhythm as Sign Pattern of Obstacle Detection,” IEEE International Symposium on Industrial Electronics, Budapest, Hungary, pp. 271-277, June 1993
[22: Dickmanns at al. 1994]
E. D. Dickmanns, R. Behringe; D. Dickmanns, T. Hildebrand; M. Maure; F. Thomanek and J. Schiehlen, “The Seeing Passenger Car ‘VaMoRs-P’,” in Proceedings of the Intelligent Vehicles Symposium, Vol. 9, pp. 68-73, October 1994
[23: Bertozzi et al. 1997]
M. Bertozzi, A. Broggi and S. Castelluccio, “A Real-Time Oriented System for Vehicle Detection,” Journal of Systems Architecture, Vol. 43, Issue 1-5, pp. 317-325, March 1997
[24: Goerick et al. 1996]
C. Goerick, N. Detlev and M. Werner, “Artificial Neural Networks in Real-Time Car Detection,” Pattern Recognition Letters, Vol. 17, Issue 4, pp. 335-343, April 1996
[25: Handmann et al. 2000]
U. Handmann, T. Kalinke, C. Tzomakes, M. Werner and W. Seelen, “An Image Processing System for Driver Assistance,” Image and Vision Computing, Vol. 18, No. 5, pp. 367-376, April 2000
[26: Betke et al. 2000]
M. Betke, E. Haritaglu and L. Davis, “Real-Time Multiple Vehicle Detection and Tracking from a Moving Vehicle,” Machine Vision and Application, Vol. 12, No. 2, pp. 69-83, 2000
[27: Kalinke et al. 1998]
T. Kalinke, C. Tzomakas and W. Seelen, “A Texture-Based Object Detection and an Adaptive Model-Based Classification,” in Proceedings of the Intelligent Vehicles Symposium, pp. 143-148, 1998
[28: Cucchiara & Piccardi 1999]
R. Cucchiara and M. Piccardi, “Vehicle Detection under Day and Night Illumination,” in Proceedings of ISCS-IIA99 Special session on vehicle traffic and
surveillance, 1999
[29: Zhao & Yuta 1993]
G. Zhao and S. Yuta, “Obstacle Detection by Vision System for Autonomous Vehicle,” in Proceedings of Intelligent Vehicle Symposium, Tokyo, Japan, pp. 31-36, July 1993
[30: Masaki 1997]
I. Masaki, “Vision-Based Vehicle Guidance,” IEEE International Conference on Industrial Electronics, Control, Instrumentation, and Automation, Power Electronics and Motion Control, San Diego, USA, Vol. 2, No. 7, pp. 862-867, November 9-13, 1992
[31: Xiaoli & Dianfu 2012]
H. Xiaoli and H. Dianfu, “Vehicle Window Detection Based on Line Features,” IEEE International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), Sanya, China, Vol. 1, pp. 261-263 , August 25-28, 2012
[32: Ali et al. 2007]
H. Ali, C. Seifert, N. Jindal, L. Paletta and G. Paar, “Window Detection in Facades,” IEEE International Conference on Image Analysis and Processing, Modena, Italy, pp. 837-842, September 10-14, 2007
[33: First Drive: 2012 BMW Active – The electric version]
Available:
http://www.vehiclepassion.com/2011/10/23/first-drive-2012-bmw-activee---the-electric-version-2/
[34: Chang & Lian 2013 ]
K. H. Chang and F. L. Lian, “A vanishing-point-based camera calibration method with application for constructing vehicular geometric features from two cameras,” 1^st edition, Taipei, Taiwan, Editor: NTU, 2013, pp. 1-171

[35: G. Wang, D et al. 2008]
G. Wang, D. Xiao and G. J, “Review on vehicle detection based on video for traffic surveillance,” in Proceedings of IEEE International Conference on Automation and Logistic, Qingdao, China, pp. 2961-2966, September 1-3, 2008
[36: Infrared photography - Wikipedia]
Available:
http://en.wikipedia.org/wiki/Infrared_photography
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55485-
dc.description.abstract交通影像的處理可以提供許多資訊以提供交通上的規畫以及控制,例如車輛的偵測以及可行走駕駛區域偵測提供自動駕駛系統有關附近車況的資訊,以及道路車流量的規劃。
在這篇論文中處理的對象利用紅外線閃光燈在高乘載到路旁所得到的影像。所要偵測的物體為車子的後車窗。而物體偵測通常會採用機器學習的方法,針對該物體的某些特徵訓練分辨器並辨識影像中的物體。然而,使用這種方法,辨識的好壞取決於訓練分辨器的影像,由於無法窮舉所有可能的車窗影像讓分辨器學習,所以此種方法並不實際。
在後車窗偵測上,將利用影像上線條的資訊選取可能為後車窗的結構線。利用邊緣偵測將影像轉為灰階影像,並計算影像中的消失點座標,將影像的上邊緣點及左邊緣點連線。在理論上,車窗的結構線將通過較多的邊界點,在灰階影像的白色點。透過計算每條線通過的邊界強度可以推測出哪四條線為車窗的結構線。
而得到的結構線,利用幾何關係和通過的邊界強度關係,再次確認得到的車後窗結構線是否為真正的車窗。幾何關係判斷該組結構線是否不合一般車窗的幾何形狀,或者在影像中不合理的位置。邊界強度關係判斷該組結構線是否通過一定數量的邊界強度。達到以上兩組判斷機制的結構線才可配認定為車窗。
zh_TW
dc.description.abstractThe processing of traffic image can provide useful information about traffic management. For example, on-road vehicle detection and drivable region detection can provide the information about nearby traffic condition to the auto-driving system and the management of traffic flow.
In this thesis, the processed objects are the images photographed by infrared flash which is next to the high occupancy vehicle lanes. The rear windows of on-road vehicles are the detection objects. The detection of objects usually uses the methods based on machine learning. The usage of features of objects is that they train the classifier to identify the objects in the image. However, the detection results are dependent on the training images for classifier. Because it is impossible to supply all kinds of images in different conditions to train the classifier, the machine learning method is impractical.
In this thesis, the rear window detection uses the line information in the image to select the possible structure lines of rear window. Edge detectors change the input images to grey level images. Then the algorithm in this thesis calculates the vanishing points’ coordinate and connects the upper side and left side points to the vanishing points. The structure lines of rear window pass the number of edge points more than other lines. By calculating the edge magnitude which each line pass, it is possible to select the candidates which are the structure lines of rear window.
The set of structure lines are judged by the geometry and edge magnitude relationship. Geometry relationship judges the set of structure lines whether is in accordance with the common shape of rear window or not. Edge magnitude relationship decides whether the set of structure lines which passed the edge magnitude exceeding a threshold. The set of structure lines which satisfy the two kind of relationship is considered as the rear window of on-road vehicle.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:05:08Z (GMT). No. of bitstreams: 1
ntu-103-R01921061-1.pdf: 10298339 bytes, checksum: 524007edd4956700d079de5ee4a6691d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 i
ABSTRACT iii
Table of Content v
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Formulation 2
1.3 Contribution 5
1.4 Organization of the Thesis 6
Chapter 2 Background and Literature Review 7
2.1 Sensor Types 7
2.2 Traffic Image Types 8
2.3 On-Road Vehicle Detection 9
Chapter 3 Related Algorithms 17
3.1 Sobel Edge Detection 17
3.2 Canny Edge Detection 18
Chapter 4 Construction of Structure Lines of Window 21
4.1 Introduction of Structure Lines of Window 22
4.2 System Architecture 25
4.3 Vehicle Contour Extraction 27
4.3.1 Preliminary U and L 27
4.3.2 Preliminary Contour Extraction 33
4.4 Structure Line from Vehicle Contour 38
4.4.1 The Removal of Background from Preliminary Contour 38
4.4.2 Constructing U and L 39
4.4.3 Constructing B and C 42
4.5 Judge Function 48
4.5.1 Geometry Judge Function 49
4.5.2 Edge Information Judge Function 51
Chapter 5 Experiments and Results 53
5.1 The Overall System Architecture 53
5.2 Experimental Scenes Introduction 55
5.3 Construction of the structure lines 57
5.3.1 Vehicle Contour Extraction 58
5.3.2 Structure Lines from Preliminary Contour 96
5.4 Judge Function from Structure Lines 129
5.5 Other Results of Structure Line Extraction 132
5.6 Run Time Comparison 136
Chapter 6 Conclusion and Future Works 141
6.1 Conclusion 141
6.2 Future Works 142
References 143
dc.language.isoen
dc.subject結構線zh_TW
dc.subject邊緣偵測zh_TW
dc.subject交通影像zh_TW
dc.subject邊界強度zh_TW
dc.subject判斷機制zh_TW
dc.subjectstructure lineen
dc.subjecttraffic imageen
dc.subjectjudge functionen
dc.subjectedge detectionen
dc.subjectedge magnitudeen
dc.title利用邊界資訊及幾何關係之車輛後車窗邊界偵測zh_TW
dc.titleRear Window Detection for On-Road Vehicles Based on the Information of Edge and Geometry Relationshipen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee簡忠漢,黃正民,李後燦
dc.subject.keyword交通影像,結構線,邊緣偵測,邊界強度,判斷機制,zh_TW
dc.subject.keywordtraffic image,structure line,edge detection,edge magnitude,judge function,en
dc.relation.page148
dc.rights.note有償授權
dc.date.accepted2014-09-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
10.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved