請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55484完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆(Feipei Lai) | |
| dc.contributor.author | Wei Chen | en |
| dc.contributor.author | 陳維 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:05:05Z | - |
| dc.date.available | 2015-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-09-24 | |
| dc.identifier.citation | [1] Normile D, “The new face of traditional Chinese medicine,” Science 2003;299:188–90
[2] Lin Wang, Y.Y., Chang, S.L., Wu, Y.E., Hsu, T.L., and Wang, W.K., “Resonance. The missing phenomenon in hemodynamics,” Circulation Research 69, 246-249. [3] Zhaohua Wu, and Norden E. Huang, 'Ensemble empirical mode decomposition: a noise-assisted data analysis method,' Advances in adaptive data analysis 1, no. 01 (2009): 1-41. [4] Wang, W.K., Lin Wang, Y.Y., Hsu, T.L., Chiang, Y., “Some foundation of pulse feeling in Chinese medicine,” in: Young, W.J. (Ed.) Biomedical Engineering-An International Symposium. Washington, DC: Hemisphere, 1989, pp. 268-297. [5] Lin Wang, Y.Y., Hsu, T.L., Jan, M.Y., Wang, W.K., “Review: theory and applications of the harmonic analysis of arterial pressure pulse waves,” Journal of Medical and Biological Engineering 30, 2010, 125-131. [6] L.S. Xu, D. Zhang, K.Q. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Trans. Biomed. Eng., 52 (11) (2005), pp. 1973–1975. [7] Wei, L.Y., Chow, P., “Frequency distribution of human pulse spectra,” IEEE Trans Biomed Eng 32, 1985, 245-246. [8] Y.Y.L. Wang, S.H. Wang, M.Y. Jan, W.K. Wang, “Past, Present, and Future of the Pulse Examination,” JTCM 2012; 2:3 164-185. [9] Taylor, M. G, 'An approach to an analysis of the arterial pulse wave II. Fluid oscillations in an elastic pipe,' Physics in medicine and biology 1, no. 4 (1957): 321. [10] Wantland, Dean J., Carmen J. Portillo, William L. Holzemer, Rob Slaughter, and Eva M. McGhee, 'The effectiveness of Web-based vs. non-Web-based interventions: a meta-analysis of behavioral change outcomes,' Journal of medical Internet research 6, no. 4 (2004). [11] Wei-Hsin Chen, Sheau-Ling Hsieh, Kai-Ping Hsu, Han-Ping Chen, Xing-Yu Su, Yi-Ju Tseng, Yin-Hsiu Chien, Wuh-Liang Hwu, and Feipei Lai, 'Web-Based Newborn Screening System for Metabolic Diseases: Machine Learning Versus Clinicians,' Journal of medical Internet research 15, no. 5 (2013). [12] Chia-Ping Shen, Weizhi Zhou, Feng-Seng Lin, Hsiao-Ya Sung, Yan-Yu Lam, Wei Chen, Jeng-Wei Lin, Ming-Kai Pan, Ming-Jang Chiu, and Feipei Lai, 'Epilepsy analytic system with cloud computing,' In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 1644-1647. IEEE, 2013. [13] Alcaniz, Mariano, Cristina Botella, Rosa Banos, Concepcion Perpina, Beatriz Rey, Jose Antonio Lozano, Veronica Guillen, Francisco Barrera, and Jose Antonio Gil, 'Internet-based telehealth system for the treatment of agoraphobia,' CyberPsychology & Behavior 6, no. 4 (2003): 355-358. [14] M. Witzke, “Linear and widely linear filtering applied to iterative detection of generalized MIMO signals,” Annales des Telecommunications, vol. 60, no. 2, pp. 113–117, 2005. [15] Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic resonance,” Journal of Physics A, vol. 14, no. 11, pp. L453–L457, 1981. [16] Forster, Lorna Earl, and Joanne Lynn, 'Predicting Life Span for Applicants to: Inpatient Hospice,' Archives of internal medicine 148, no. 12 (1988): 2540. [17] Do Hoon Kim, Jeong A. Kim, Youn Seon Choi, Su Hyun Kim, June Young Lee, and Young Eun Kim, 'Heart rate variability and length of survival in hospice cancer patients,' Journal of Korean medical science 25, no. 8 (2010): 1140-1145. [18] Jui-Kun Chiang, Terry BJ Kuo, Chin-Hua Fu, and Malcolm Koo, 'Predicting 7-Day Survival Using Heart Rate Variability in Hospice Patients with Non-Lung Cancers,' PloS one 8, no. 7 (2013): e69482. [19] Barriere, Steven L., and Stephen F. Lowry, 'An overview of mortality risk prediction in sepsis,' Critical care medicine 23, no. 2 (1995): 376-393. [20] Pine, Richard W., Margaret J. Wertz, E. Stan Lennard, E. Patchen Dellinger, C. James Carrico, and Barbara H. Minshew, 'Determinants of organ malfunction or death in patients with intra-abdominal sepsis: a discriminant analysis,' Archives of Surgery 118, no. 2 (1983): 242. [21] Marik, PaulE, 'Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis,' CHEST Journal 104, no. 1 (1993): 225-229. [22] Welch, Peter D, 'The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,' IEEE Transactions on audio and electroacoustics 15, no. 2 (1967): 70-73. [23] Bracewell, Ronald N. 'Fourier transform and its applications.' (1980). [24] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non- stationary Time Series Analysis,” Proc. R. Soc. Lond. A, vol. 454, pp. 903- 995, 1998. [25] Chen, Wei, Yan-Yu Lam, Chia-Ping Shen, Hsiao-Ya Sung, Jeng-Wei Lin, Ming-Jang Chiu, and Feipei Lai, 'Ultra-fast Epileptic seizure detection using EMD based on multichannel electroencephalogram,' In Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th International Conference on, pp. 1-4. IEEE, 2013. [26] HaCohen-Kerner, Yaakov, Zuriel Gross, and Asaf Masa, 'Automatic extraction and learning of keyphrases from scientific articles,' In Computational Linguistics and Intelligent Text Processing, pp. 657-669. Springer Berlin Heidelberg, 2005. [27] Maddouri, Samia Snoussi, Fadoua Bouafif Samoud, Kaouthar Bouriel, Noureddine Ellouze, and Haikal El Abed, 'Baseline extraction: Comparison of six methods on ifn/enit database,' In the 11th International Conference on Frontiers in Handwriting Recognition. 2008. [28] Tanaka, Hirofumi, Kevin D. Monahan, and Douglas R. Seals, 'Age-predicted maximal heart rate revisited,' Journal of the American College of Cardiology 37, no. 1 (2001): 153-156. [29] Manpreet Kaur and Birmohan Singh, 'Comparison of different approaches for removal of baseline wander from ecg signal,' In Proceedings of the International Conference & Workshop on Emerging Trends in Technology, pp. 1290-1294. ACM, 2011. [30] Cressie, N. A. C., and H. J. Whitford, 'How to Use the Two Sample t‐Test,' Biometrical Journal 28, no. 2 (1986): 131-148. [31] Sun DC, ANSWatch Wrist Monitor Technical Report and ANSWatch Wrist Monitor Pre-clinical Test Report, Submitted to Taiwan DOH (2005). [32] Shiu-Shin Chio. 'DYNAPULSER 5000A MINI Ambulatory Blood Pressure and Waveform Recording System,' n.p., Vista, California USA., Web [33] Shiu-Shin Chio. “Pulse Dynamics, the Essentials of DynaPulse Noninvasice Blood Pressure and Hemodynamic Monitoring,” 3rd ed. Vista, California USA: DynaPulse, 2013. Print. [34] Birren, James E., and Patrick D. Wall. 'Age changes in conduction velocity, refractory period, number of fibers, connective tissue space and blood vessels in sciatic nerve of rats,' Journal of Comparative Neurology 104, no. 1 (1956): 1-16. [35] Stern, Michael P., Ken Williams, and Steven M. Haffner, 'Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test?' Annals of Internal Medicine 136, no. 8 (2002): 575-581. [36] Greene, ANDREW S., PETER J. Tonellato, J. E. F. F. Lui, J. H. Lombard, and A. W. Cowley, 'Microvascular rarefaction and tissue vascular resistance in hypertension,' American Journal of Physiology-Heart and Circulatory Physiology 256, no. 1 (1989): H126-H131. [37] Wong, Tien Yin, Bruce B. Duncan, Sherita Hill Golden, Ronald Klein, David J. Couper, Barbara EK Klein, Larry D. Hubbard, A. Richey Sharrett, and Maria I. Schmidt, 'Associations between the metabolic syndrome and retinal microvascular signs: the Atherosclerosis Risk In Communities study,' Investigative ophthalmology & visual science 45, no. 9 (2004): 2949-2954. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55484 | - |
| dc.description.abstract | 中醫發展了五千年,近年來再度受到學者的關注。如何將近代的科學研究方法與精神,應用在傳統的中國醫學所描繪的人體系統與氣的循環上,是醫學研究者與資訊學研究者需要共同攻克的議題。中醫與現代醫學這兩種截然不同醫學描述方法,在脈波的研究時擦出了閃耀的火花。脈波也是波,能夠被醫療資訊研究與分析,分析的結果是血液動力學的模型能解釋的結論,也是中醫系統能夠闡述的脈象。
本研究開發了一雲端脈波的分析平台。該平台能用以累積脈波研究資料,並將資料分組分析。有鑑於先前的脈波分析使用了大量的時頻分析方法的共振頻分析方法,而該方法在脈波維持連續重複波形的特性下才具有數學意義,本研究於訊號前處理端亦開發了一於時域訊號進行週期波分析的演算法。該演算法能進行快速的週期波篩選以利於後續的脈波分析。 本研究之派波分析平台可提供所有進行脈波研究者所使用。本平台目前已收集六組研究小組之資料,包含安寧病房病患之脈波研究,敗血症病患之存活率研究,洗腎病患脈波研究,脈波於不同年齡層之研究,心血管疾病與脈波之研究,肺部疾病脈波之研究等等。經由統計與分析觀察脈波隨身體狀態之變化,本研究已有相當數量之結果與產出。 | zh_TW |
| dc.description.abstract | The proposed pulse analysis system provides a platform for researchers to analyze, share, and store their pulse data. A novice and easy time-domain algorithm is applied to the pulse signals for periodic function examination. Monitoring and modeling our body as a system with pulse using digital pulse signals is one of the linkages that we can find between Traditional Chinese Medicine (TCM) and modern Information Communication Technology (ICT). With the labeling of diseases or some modern Bio-markers, we are able to link TCM, ICT, and the latest medical science together. The proposed method is capable of calculating the instability of the pulse wave of subjects. After finding the starting point of each period in a periodic wave, we use set theory as the constraint to detect stable periodic wave. With normal heart rate checking and the variability of each period checking, our algorithm can detect whether the input signal is normal, stable and periodic. A coefficient that represents the instability is calculated by the average standard deviation of each period in the waveform. The proposed system helps the automation for pulse examination to select a proper segment for harmonic analysis. The system is capable of using Fast Fourier Transform (FFT), harmonics, Ensemble Empirical Mode Decomposition (EEMD) as feature extraction, and using two-sample t-test as statistics and classification. An example of hospice patient death prediction shows that near-death patients within 7 days can be significantly separated from the others by the Standard Deviations (SD) of harmonics with the proposed pulse analysis system. With the periodic function examination method, non-survival sepsis patients in Continuous Mandatory Ventilation (CMV) mode or Continuous Positive Airway Pressure (CPAP) mode can be significantly separated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:05:05Z (GMT). No. of bitstreams: 1 ntu-103-R01945017-1.pdf: 1321032 bytes, checksum: eb7c9a2103fa15684442e53a05093770 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objective 2 Chapter 2 Literature review 3 2.1 Traditional Chinese Medicine – Pulse Analysis 3 2.2 Web-based Health System 4 2.3 Periodic Function Examination 5 2.4 Hospice Patient Survival Prediction 5 2.5 Sepsis Patient Survival Prediction 6 2.6 Summary 7 Chapter 3 Methods 8 3.1 Technique Used in Research 8 3.1.1 Fast Fourier Transform – Harmonic 8 3.1.2 Hilbert Huang Transform – EMD 10 3.1.3 Baseline Extraction 12 3.1.4 Periodic Function Examination – Novice Approach 13 3.2 System Architecture 16 3.2.1 Architecture 16 3.2.2 Data Processing Structure 19 3.3 System Interface 22 3.3.1 Pulse View 22 3.3.2 Pulse Analysis 24 3.3.3 System Tutorial UI 25 3.4 System Implementation 26 3.4.1 Data Recording Instrument 26 3.4.2 Research Management Groups 26 3.4.3 Data Management Groups 27 Chapter 4 Experiments 28 4.1 Experiment 1 – Periodic Function Examination Test 28 4.2 Experiment 2 – Hospice Patient Study and Liver Transplantation 28 4.2.1 Hospice Patient Study 29 4.2.2 Liver Transplantation Case Study 29 4.3 Experiment 3 – Sepsis Patient Study 30 4.4 Experiment 4 – Age and Cardiovascular Study 31 4.4.1 Pulse in Different Age Groups 31 4.4.2 Pulse in Different Cardiovascular Diseases 32 Chapter 5 Results 35 5.1 Experiment 1 – Periodic Function Examination Test 35 5.2 Experiment 2 – Hospice Patient Study and Liver Transplantation 36 5.2.1 Hospice Patient Study 36 5.2.2 Liver Transplantation Case Study 41 5.3 Experiment 3 – Sepsis Patient Study 42 5.4 Experiment 4 – Age and Cardiovascular Study 46 5.4.1 Pulse in Different Age Groups 46 5.4.2 Pulse in Different Cardiovascular Diseases 49 Chapter 6 Discussion 55 6.1 Experiment 1 – Periodic Function Examination Test 55 6.2 Experiment 2 – Hospice Patient Study and Liver Transplantation 55 6.2.1 Hospice Patient Study 55 6.2.2 Liver Transplantation Case Study 56 6.3 Experiment 3 – Sepsis Patient Study 56 6.4 Experiment 4 – Age and Cardiovascular Study 57 6.4.1 Pulse in Different Age Groups 57 6.4.2 Pulse in Different Cardiovascular Diseases 57 6.5 Conclusion 58 REFERENCE 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中醫 | zh_TW |
| dc.subject | 生醫資訊 | zh_TW |
| dc.subject | 資料處理 | zh_TW |
| dc.subject | Bioinformatics | en |
| dc.subject | Traditional Chinese Medicine | en |
| dc.subject | Data Processing | en |
| dc.title | 雲端脈波分析系統與臨床資料測試 | zh_TW |
| dc.title | Cloud-based Pulse Analysis System with Clinical Data Examination | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾玉芳,黃國晉,陳澤雄,陳啟煌 | |
| dc.subject.keyword | 中醫,生醫資訊,資料處理, | zh_TW |
| dc.subject.keyword | Traditional Chinese Medicine,Bioinformatics,Data Processing, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-09-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
