請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55429完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李弘文(Hung-Wen Li) | |
| dc.contributor.author | Jing-Ru Li | en |
| dc.contributor.author | 李靜如 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:02:00Z | - |
| dc.date.available | 2015-01-27 | |
| dc.date.copyright | 2015-01-27 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-10-21 | |
| dc.identifier.citation | 1. Levy, M. Z., Allsopp, R. C., Futcher, a B., Greider, C. W. & Harley, C. B. Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–60 (1992).
2. Broccoli, D. & Cooke, H. Aging, healing, and the metabolism of telomeres. Am. J. Hum. Gen. 52, 657–60 (1993). 3. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–13 (1985). 4. Broccoli, D., Young, J. W. & de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A 92, 9082–6 (1995). 5. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–9 (1992). 6. Flores, I. et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 22, 654–67 (2008). 7. Tomas-Loba, A. et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135, 609–22 (2008). 8. Bernardes de Jesus, B. & Blasco, M. A. Telomerase at the intersection of cancer and aging. Trends Genet 29, 513–20 (2013). 9. Qi, X. et al. The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res. 41, 450–62 (2013). 10. Weilbaecher, R. G. & Lundblad, V. Assembly and regulation of telomerase. Curr. Opin. Chem. Biol. 3, 573–7 (1999). 11. Yu, G., Bradley, J., Attardi, L. & Blackburn, E. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344, 126–32 (1990). 12. Mihalusova, M., Wu, J. Y. & Zhuang, X. Functional importance of telomerase pseudoknot revealed by single-molecule analysis. Proc Natl Acad Sci U S A 108, 20339–44 (2011). 13. Vega, L. R., Mateyak, M. K. & Zakian, V. A. Getting to the end: telomerase access in yeast and humans. Nat. Rev. Mol. Cell Biol. 4, 948–59 (2003). 14. Williamson, J. R. G-quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 703–30 (1994). 15. Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat. Struct. Mol. Biol. 13, 1055–9 (2006). 16. Wang, Y. & Patel, D. Guanine Residues in d( T2AG3) and d( T2G4) Form Parallel-Stranded Potassium Cation Stabilized G-Quadruplexes with Anti Glycosidic Torsion Angles in Solution. Biochemistry 31, 8112–9 (1992). 17. Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99, 11593–8 (2002). 18. Huppert, J. L. Hunting G-quadruplexes. Biochimie 90, 1140–8 (2008). 19. Dempsey, L. a. G4 DNA Binding by LR1 and Its Subunits, Nucleolin and hnRNP D, A Role for G-G pairing in Immunoglobulin Switch Recombination. J. Biol. Chem. 274, 1066–1071 (1999). 20. Hanakahi, L. High Affinity Interactions of Nucleolin with G-G-paired rDNA. J. Biol. Chem. 274, 15908–15912 (1999). 21. Khateb, S., Weisman-Shomer, P., Hershco, I., Loeb, L. A. & Fry, M. Destabilization of tetraplex structures of the fragile X repeat sequence (CGG)n is mediated by homolog-conserved domains in three members of the hnRNP family. Nucleic Acids Res. 32, 4145–54 (2004). 22. Capra, J. A., Paeschke, K., Singh, M. & Zakian, V. A. G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces cerevisiae. PLoS Comput. Biol. 6, e1000861 (2010). 23. Hershman, S. G. et al. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 36, 144–156 (2008). 24. Huppert, J. L. & Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005). 25. Bochman, M. L., Paeschke, K. & Zakian, V. A. REVIEWS DNA secondary structures : stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780 (2012). 26. Duquette, M. L., Handa, P., Vincent, J. A., Taylor, A. F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops , novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004). 27. Lipps, H. J. & Rhodes, D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol. 19, 414–22 (2009). 28. Lange, T. De, Elledge, S., Halazonetis, T., Kastan, M. & Kouzarides, T. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426, 198–203 (2003). 29. Zaug, A. J., Podell, E. R. & Cech, T. R. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc Natl Acad Sci U S A 102, 10864–9 (2005). 30. Foury, F. pif Mutation Blocks Recombination between Mitochondrial rho + and rho - Genomes Having Tandemly Arrayed Repeat Units in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80, 5345–5349 (1983). 31. Bochman, M. L., Sabouri, N. & Zakian, V. A. Unwinding the functions of the Pif1 family helicases. DNA Repair 9, 237–49 (2010). 32. Zhang, D.-H., Zhou, B., Huang, Y., Xu, L.-X. & Zhou, J.-Q. The human Pif1 helicase, a potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids Res. 34, 1393–404 (2006). 33. Boule, J.-B. & Zakian, V. A. Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res. 34, 4147–53 (2006). 34. Paeschke, K. et al. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497, 458–62 (2013). 35. Schmidt, K. H., Derry, K. L. & Kolodner, R. D. Saccharomyces cerevisiae RRM3, a 5’ to 3' DNA helicase, physically interacts with proliferating cell nuclear antigen. J. Biol. Chem. 277, 45331–7 (2002). 36. Zhou, X. Z. & Lu, K. P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347–59 (2001). 37. Lahaye, A. & Leterme, S. PIF 1 DNA Helicase from Saccharomyces cerevisiae. J. Biol. Chem. 268, 26155–26161 (1993). 38. Lahaye, A., Stahl, H., Thines-Sempoux, D. & Foury, F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10, 997–1007 (1991). 39. Cheng, X., Dunaway, S. & Ivessa, A. S. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. Mitochondrion 7, 211–22 (2007). 40. Saini, N. et al. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502, 389–92 (2013). 41. Wilson, M. a et al. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature 502, 393–6 (2013). 42. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–6 (2001). 43. Ivessa, A. S., Zhou, J. . Q. & Zakian, V. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–89 (2000). 44. Budd, M. E., Reis, C. C., Smith, S., Campbell, J. L. & Myung, K. Evidence Suggesting that Pif1 Helicase Functions in DNA Replication with the Dna2 Helicase / Nuclease and DNA Polymerase δ. Mol. Cell. Biol. 26, 2490–2500 (2006). 45. Pike, J. E., Burgers, P. M. J., Campbell, J. L. & Bambara, R. a. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J. Mol. Biol. 284, 25170–80 (2009). 46. Pike, J. E., Henry, R. a, Burgers, P. M. J., Campbell, J. L. & Bambara, R. a. An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase. J. Mol. Biol. 285, 41712–23 (2010). 47. Schulz, V. P. & Zakian, V. A. The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–55 (1994). 48. Zhou, J. Q., Monson, E., Teng, S.-C., Schulz, V. P. & Zakian, V. A. Pif1p Helicase, a Catalytic Inhibitor of Telomerase in Yeast. Science 289, 771–774 (2000). 49. Boule, J.-B., Vega, L. R. & Zakian, V. A. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57–61 (2005). 50. Mateyak, M. K. & Zakian, V. A. Human PIF helicase is cell cycle regulated and associates with telomerase. Cell cycle 5, 2796–2804 (2006). 51. Boule, J.-B. & Zakian, V. A. The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res. 35, 5809–18 (2007). 52. Eugster, A. et al. The finger subdomain of yeast telomerase cooperates with Pif1p to limit telomere elongation. Nat. Struct. Mol. Biol. 13, 734–9 (2006). 53. Ribeyre, C. et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 5, e1000475 (2009). 54. Sanders, C. M. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem. J. 430, 119–28 (2010). 55. Paeschke, K., Capra, J. A. & Zakian, V. A. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678–91 (2011). 56. Zhou, R., Zhang, J., Bochman, M. L., Zakian, V. A. & Ha, T. Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA. eLIFEe e02190 (2014). 57. Ramanagoudr-Bhojappa, R. et al. Yeast Pif1 Helicase Exhibits a One Base Pair Stepping Mechanism for Unwinding Duplex DNA. J. Biol. Chem. 288, 1–23 (2013). 58. Galletto, R. & Tomko, E. J. Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res. 41, 4613–4627 (2013). 59. Schafer, D. A., Gelles, J., Sheets, M. P. & Landick, R. Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444–48 (1991). 60. Yin, H., Landick, R. & Gelles, J. Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. Biophys. J. 67, 2468–78 (1994). 61. Zhou, J., Hidaka, K. & Futcher, B. The Est1 Subunit of Yeast Telomerase Binds the Tlc1 Telomerase RNA. Mol. Cell. Biol. 20, 1947–55 (2000). 62. Puig, O. et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–29 (2001). 63. Autexier, C. & Lue, N. F. The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75, 493–517 (2006). 64. Cohn, M. & Blackburn, E. Telomerase in yeast. Science 269, 396–400 (1995). 65. Hsu, M. & Lue, N. F. Telomeres and Telomerase. Methods Mol. Biol. 735, 97–106 (2011). 66. Lin, J.-J. & Zakian, V. A. An In Vitro Assay for Saccharomyces Telomerase. Cell 81, 1127–1135 (1995). 67. Prescott, J. & Blackburn, E. H. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev. 11, 2790–800 (1997). 68. Barranco-Medina, S. & Galletto, R. DNA binding induces dimerization of Saccharomyces cerevisiae Pif1. Biochemistry 49, 8445–54 (2010). 69. Ha, T., Kozlov, A. G. & Lohman, T. M. Single-molecule views of protein movement on single-stranded DNA. Annu. Rev. Biophys. 41, 295–319 (2012). 70. Chung, C. & Li, H.-W. Direct observation of RecBCD helicase as single-stranded DNA translocases. J. Am. Chem. Soc. 135, 8920–5 (2013). 71. Finkelstein, I. J., Visnapuu, M.-L. & Greene, E. C. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468, 983–7 (2010). 72. Byrd, A. K. & Raney, K. D. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat. Struct. Mol. Biol. 11, 531–8 (2004). 73. Guy, C. P. et al. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol. Cell 36, 654–66 (2009). 74. Byrd, A. K. & Raney, K. D. Displacement of a DNA binding protein by Dda helicase. Nucleic Acids Res. 34, 3020–9 (2006). 75. Iglesias, N. & Lingner, J. Related mechanisms for end processing at telomeres and DNA double-strand breaks. Mol. Cell 35, 137–8 (2009). 76. Vega, L. R. et al. Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. PLoS Genet 3, e105 (2007). 77. Pike, J. E., Burgers, P. M. J., Campbell, J. L. & Bambara, R. A. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J. Biol. Chem. 284, 25170–80 (2009). 78. Dewar, J. M. & Lydall, D. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO J. 29, 4020–34 (2010). 79. Parks, J. W. & Stone, M. D. telomerase catalytic cycle. Nat. Commun. 5, 1–10 (2014). 80. Chang, C. A Carbazole Derivative Synthesis for Stabilizing the Quadruplex Structure. J. Chin. Chem. Soc. 50, 185–188 (2003). 81. Chang, C. et al. A Fluorescent Carbazole Derivative: High Sensitivity for Quadruplex DNA. Anal. Chem. 75, 6177–6183 (2003). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55429 | - |
| dc.description.abstract | 端粒酶 (telomerase),為一核酸蛋白複合體,負責延長真核細胞染色體尾端的端粒序列(telomere)。利用其核酸部分作為模板股,端粒酶能夠執行反轉錄的功能來延長染色體尾端的不斷重複的端粒片段。研究指出,Pif1解旋酶具有調控端粒酶的能力。我們利用單分子栓球實驗,直接地觀察到Pif1解旋酶從端粒末段將端粒酶移除,進而調控端粒酶的反應。首先,我們觀察到Pif1利用水解三磷酸腺苷 (ATP) 的能量來移除端粒酶,使得原本與端粒穩定結合的端粒酶,得以與新的端粒片段反應,導致整體被延長的端粒比例增加。在移除過程中,較長的單股去氧核醣核酸與高濃度的Pif1都能展現較好的移除效率,根據這些實驗結果,我們建立一簡單模型去解釋Pif1如何調控端粒酶活性以及端粒長度的機制。由於端粒末段富含GC的序列,可以形成鳥嘌呤-四股的特殊結構。因此,四股結構的形成可以影響基因表現以及端粒與端粒酶的作用。Pif1已被指出具有解開鳥嘌呤四股結構的能力,我們利用單分子栓球實驗直接觀察Pif1能有效解開鳥嘌呤四股結構,並接續解開下游的雙股核酸,指出Pif1的解旋活性及移除端粒酶性質,可以在細胞環境下用以調控具有鳥嘌呤四股結構的端粒長度與端粒酶活性。 | zh_TW |
| dc.description.abstract | Telomerase, a ribonucleoprotein complex, is responsible for maintaining the telomere length at chromosome ends. Using its RNA component as a template, telomerase uses its reverse transcriptase activity to extend the 3’-end single-stranded, repetitive telomeric DNA sequence. Pif1, a 5’-to-3’ helicase, has been suggested to regulate telomerase activity. We used single-molecule experiments to directly show that Pif1 helicase regulates telomerase activity by removing telomerase from telomere ends, allowing the cycling of the telomerase for additional processes. This telomerase removal efficiency increases at longer ssDNA gaps and at higher Pif1 concentration. The enhanced telomerase removal efficiency by Pif1 at the longer single-stranded telomeric DNA suggests a way of how Pif1 regulates telomerase activity and telomere length. On the other hand, G-quadruplex is specific nucleic acids structure which is reported to be present in the promoter regions as well as telomeres with GC-rich sequence. The folding of G-quadruplex is implicated in regulating gene expression and telomere maintenance. Pif1 monomer is evidenced to be able to resolve the G-quadruplex structure using the “patrolling” mechanism without leaving the G-quadruplex sequence to keep unwinding the downstream duplex DNA. Here, we observed that Pif1 is capable of unwinding the dsDNA immediately following the G-quadruplex unwinding in the high Pif1 concentration. Our results suggest by resolving the G-quadruplex during replication and transcription, Pfi1 may play important roles not only in regulating telomere length but also in maintaining genome stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:02:00Z (GMT). No. of bitstreams: 1 ntu-103-F98223214-1.pdf: 2860908 bytes, checksum: 06fe957886b58038d97d91dd8ff69b65 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | CHAPTER 1: Introduction and Objective 1
1.1 Telomere and telomerase: the savior of end replication 1 1.2 G-quartet and G-quadruplex: nucleic-acid-based regulator 5 1.3 Pif1: helicase that regulates telomerase activity and unwinds G-quadruplex 9 1.4 Motivation and objective 15 1.5 Tethered particle motion (TPM) 16 CHAPTER 2: Material and Methods 19 2.1 DNA preparation 19 2.2 Synthesis of calmodulin coated and streptavidin coated polystyrene beads 26 2.3 Telomerase calmodulin-bead coupling 27 2.4 Tethered particle motion (TPM)-based in vitro telomerase activity assay 28 2.5 Slide preparation 28 2.6 Substrate DNA immobilization 29 2.7 Microscope observation, image acquisition and analysis. 30 2.8 Protein purifications 30 2.8.1 Purification of telomerase. 30 2.8.2 Purification of Pif1. 30 2.9 Gel electrophoresis unwinding assay 31 2.10 BMVC fluorescence measurement 32 2.11 Pif1 helicase unwinding assay 32 CHAPTER 3: How ScPif1 Regulates Telomerase Activity 33 3.1 In vitro telomerase activity assay monitors telomerase activity 33 3.2 Pif1 regulates telomerase activity with concentration dependence 42 3.3 Stalled telomerase-telomere complex is stable within 30 minutes scale 46 3.4 Pif1 helicase requires ~ 5 nt ssDNA gaps for efficient unwinding 49 3.5 Investigating the interaction between Pif1 helicase and telomerase 54 3.5.1 Direct observation of telomerase removal by Pif1 helicase 54 3.5.2 Pif1 preferentially removes telomerase from DNA with a long ssDNA gap 56 3.6 Discussion 61 CHAPTER 4: Understanding the effect of G-quadruplex unfolding facilitated by Pif1 helicase in duplex DNA 69 4.1 Motivation 69 4.2 Evidence for the presence of G-quadruplex structure 69 4.3 Pif1 Unwinding G-quadruplex structure requires ssDNA loading sites 70 4.4 Successfully detecting the dsDNA unwinding after G-quadruplex unwinding 72 4.5 G-quadruplex unwinding efficiency is similar to the ssDNA translocating efficiency at high Pif1 concentration 75 4.6 Discussion 77 CHAPTER 5: Conclusion and Outlook 79 REFERENCE 82 | |
| dc.language.iso | en | |
| dc.subject | 端粒 | zh_TW |
| dc.subject | 單分子栓球實驗 | zh_TW |
| dc.subject | Pif1解旋? | zh_TW |
| dc.subject | 鳥嘌呤-四股結構 | zh_TW |
| dc.subject | 端粒? | zh_TW |
| dc.subject | telomerase | en |
| dc.subject | telomere | en |
| dc.subject | Pif1 helicase | en |
| dc.subject | G-quadruplex | en |
| dc.subject | single molecule TPM | en |
| dc.title | 以單分子技術研究酵母系統中Pif1解旋酶調控端粒酶與鳥嘌呤-四股結構之機制 | zh_TW |
| dc.title | Using Single-Molecule Techniques to Investigate How ScPif1 Regulates Yeast Telomerase Activity and G-quadruplex Formation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),張大釗(Ta-Chau Chang),冀宏源(Hung-Yuan Chi),詹迺立(Nei-Li Chan),徐駿森(Chun-Hua Hsu) | |
| dc.subject.keyword | 端粒?,端粒,Pif1解旋?,鳥嘌呤-四股結構,單分子栓球實驗, | zh_TW |
| dc.subject.keyword | telomerase,telomere,Pif1 helicase,G-quadruplex,single molecule TPM, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-10-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
