請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55412
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周中哲 | |
dc.contributor.author | Wen-Jing Tsai | en |
dc.contributor.author | 蔡文璟 | zh_TW |
dc.date.accessioned | 2021-06-16T04:01:05Z | - |
dc.date.available | 2017-02-03 | |
dc.date.copyright | 2015-02-03 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-10-24 | |
dc.identifier.citation | 1. AISC (American Institute of Steel Construction). Seismic provisions for structural steel buildings. Chicago, IL. 2010.
2. AISC (American Institute of Steel Construction). Manual of steel construction load and resistance factor design. Chicago, IL. 2010. 3. Chou C-C, Chung P-T, Tsai W-J. (2014). Dual-Core Self-Centering Buckling-Restrained Brace. US Patent (8763320,accepted in 2014/7/1). 4. Chou C-C, Chung P-T (2014). “Development of Cross-Anchored Dual-Core Self-Centering Braces for Seismic Resistance.” J. Constructional Steel Research, 101, 19-32. 5. Chou C-C, Chen Y-C, Pham D-H, Truong V-M (2014). “Steel Braced Frames with Dual-Core SCBs and Sandwiched BRBs: Mechanics, Modeling and Seismic Demands.” Engineering Structures, 72, 26-40. 6. Chou C-C, Chen Y-C (2013). “Development of Steel Dual-Core Self-Centering Braces: Quasi-Static Cyclic Tests and Finite Element Analyses” Earthquake Spectra, (doi: http://dx.doi.org/10.1193/082712EQS272M, available online September 6, 2013) 7. Chou C-C, Chen Y-C, Chung P-T, Pham D-H, Liu J-H (2013). “Low-Damage Earthquake-Resisting Systems Using Sandwiched Buckling-Restrained Braces and Dual-Core Self-Centering Braces” Applied Mechanics and Materials, 353-356,1946-1958. 8. Chou, C. C., Chen, Y. C. (2013). “Development of Steel Dual-Core Self-Centering Braces: Quasi-Static Cyclic Tests and Finite Element Analyses” Earthquake Spectra (DOI 10.1193/082712EQS272M, available online September 6, 2013) 9. Chou C-C, Chen Y-C (2012). “Development and Seismic Performance of Steel Dual-Core Self-Centering Braces.”15th World Conference on Earthquake Engineering, September 24-28, Lisbon, Portugal. (Paper No. 1648) 10. Chou C-C, Chen Y-C, Pham D-H, Truong V-M (2012). “Experimental and Analytical Validation of Steel Dual-CoreSelf-Centering Braces For Seismic-Resisting Structures.” 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering, March 6-8, Tokyo, Japan. 11. Chou, C. C., Chen Y. C. (2012). “Development and Seismic Performance of Steel Dual-Core Self-Centering Braces.” 15th World Conference on Earthquake Engineering, September 24-28, Lisbon, Portugal. (Paper No. 1648) 12. Chou, C. C., Chen Y. C, Pham D. H, Truong V. M. (2012). “Experimental and Analytical Validation of Steel Dual-Core Self-Centering Braces For Seismic-Resisting Structures.” 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering, March 6-8, Tokyo, Japan. 13. Chou, C. C., Chen Y. C. (2012). “Development of Steel Dual-Core Self-Centering Braces with E-Glass FRP Composite Tendons: Cyclic Tests and Finite Element analyses.” The International Workshop on Advances in Seismic Experiments and Computations, Nagoya, Japan. 14. Chou C-C, Chung P-T (2012). “Effects of Bonded Material and Concrete Infill in Sandwiched BRBs Subjected to Cyclic and Near-Field Loadings”. The Twenty-fifth KKCNN Symposium on Civil Engineering, Busan, Korea. 15. Chou C-C, Chen Y-C (2012). “Development and seismic performance of steel dual-core self-centering braces”. 15th World Conference on Earthquake Engineering, Lisbon, Portugal. (Paper No. 1648) 16. Chou C-C, Chen Y-C, Pham D-H, Truong V-M (2012). “Experimental and analytical validation of steel dual-core self-centering braces for seismic-resisting structures”. 9th International Conference on Urban Earthquake Engineering/4th Asia Conference on Earthquake Engineering, Tokyo, Japan. 17. Chou C-C, Liu J-H (2012). “Frame and brace action forces on steel corner gusset plate connections in buckling-restrained braced frames”. Earthquake Spectra, 28(2), 531-551. 18. Chou C-C, Liu J-H, Pham D-H (2012). “Steel buckling-restrained braced frames with single and dual corner gusset connections: seismic tests and analyses”. Earthquake Engineering and Structural Dynamics, 7(41): 1137-1156. 19. Chou C-C, Liu G-S, Yu J-C (2012). “Compressive behavior of dual-gusset-plate connections for buckling-restrained braced frames”, J. Constructural Steel Research, 76, 54-67. 20. Chou C-C, Chen Y-C, Chung P-T. (2012). Dual-core self-centering energy dissipation brace apparatus. US Patent No. 8316589 B2, United States Patent and Trademark Office, USA. (available online January 5, 2012, accepted on November 27, 2012) 21. Chou C-C, Chen Y-C, Chung P-T (2011). “Dual-Core Self-Centering Energy Dissipation Brace Apparatus”. US Patent (13/082780, accepted in 2012/9) 22. Chou C-C, Chen S-Y (2010). “Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces”. Engineering Structures, 32, 2108-2121. 23. Chou C-C, Chen P-J (2009). “Compressive behavior of central gusset plate connections for a buckling-restrained braced frame”. J. Constructional Steel Research, 65(5), 1138-1148. 24. C. Christopoulos, R. Tremblay, H.-J. Kim, M. Lacerte (2008). “Self-Centering Energy Dissipative Bracing System for the Seismic Resistance of Structures: Development and Validation”. Journal of Structural Engineering, 134(1):96-107. 25. David J. Miller , Larry A. Fahnestock, Matthew R. Eatherton (2012). “Development and experimental validation of a nickel–titanium shape memory alloy self-centering buckling-restrained brace”, Structural Engineering, 40, 288-298. 26. Lin C. C. (2007). “Seismic Performance of Re-Centering Brace”. MS thesis. Thesis Advisor: K. C. Tsai. National Taiwan University, Taipei, Taiwan. 27. Lin C. L. (2006). “Seismic Behavior of Post-tensioned Steel Beam to Column Connection with Friction Devices”. MS thesis. Thesis Advisor: K. C. Tsai. National Taiwan University, Taipei, Taiwan. 28. Mamoru Iwata, Masatoshi Murai (2006). “Buckling-restrained brace using steel mortar planks; performance evaluation as a hysteretic damper”. Earthquake Engineering and Structural Dynamics, 35:1807-1826. 29. Petty, G. D. (1999). “Evaluation of a friction component for a posttensioned steel connection”. MS thesis, Lehigh Univ., Bethlelem, Pa. 30. Priestley, M. J. N., S. Sritharan, et al. (1999). “Preliminary results and conclusions from the PRESSS five-story precast concrete test building”. PCI Journal, 44(6): 42-67. 31. Rojas, P., J. M. Ricles, et al. (2005). “Seismic performance of post-tensioned steel moment resisting frames with friction devices”. Journal of Structural Engineering, 131(4): 529-540. 32. Ricles, J. M., R. Sause, et al. (2002). “Experimental evaluation of earthquake resistant posttensioned steel connections”. Journal of Structural Engineering, 128(7): 850-859. 33. Ricles, J. M., R. Sause, et al. (2001). “Posttensioned seismic-resistant connections for steel frames”. Journal of Structural Engineering, 127(2): 113-121 34. R. Tremblay, M. Lacerte, C. Christopoulos (2008). “Seismic Response of Multistory Buildings with Self-Centering Energy Dissipative Steel Braces J. Structural Engineering”, ASCE, 134, 108-120. 35. Soong, T. T. and Dargush, G. F. (1997), “Passive Energy Dissipation Systems in Structural Engineering”, Wiley & Sons, New York. 36. Uang C-M, Kiggins S. (2003). “Reducing residual drift of buckling-restrained braced frames. Int. Workshop on Steel and Concrete Composite Construction”, Report No. NCREE-03-026, National Taiwan University, Taiwan. 37. 周中哲, 鍾秉庭(2014)「交錨型雙核心自復位斜撐發展驗證: 耐震試驗及有限元素分析」結構工程(102-022,2014/1 accepted for publication) 38. 鄭宇岑(2014)「大型雙核心自復位斜撐及核心更換型挫屈束制斜撐反覆載重試驗研究」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。 39. 周中哲,鍾秉庭(2014)「交錨型雙核心自復位斜撐發展驗證:耐震試驗及有限元素分析」,結構工程,第二十九卷,第二期,第82-103頁。(in Chinese) 40. 周中哲,陳映全(2012)「鋼造雙核心自復位斜撐發展與耐震實驗:應用複合纖維材料棒為預力構件」,土木工程學報,45(2),202-206,中國 41. 周中哲,陳映全(2012)「預力雙核心自復位斜撐發展與耐震實驗」結構工程,第二十七卷,第三期,108-126頁(in Chinese) 42. 周中哲,劉佳豪(2012)「可更換核心板之挫屈束制消能斜撐實尺寸構架耐震試驗:單與雙接合板設計及驗證」結構工程,第二十七卷,第二期,95-114頁(in Chinese) 43. 鍾秉庭(2012)「交錨型雙核心自復位斜撐與核心更換型挫屈束制斜撐之耐震行為」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。(in Chinese) 44. 陳映全(2011)「雙核心自復位消能斜撐之發展與驗證」,碩士論文指導教授:周中哲,國立台灣大學土木工程系。(in Chinese) 45. 周中哲,劉佳豪(2011)「挫屈束制消能斜撐構架接合板耐震設計及試驗分析」結構工程,第二十六卷,第四期,91-100頁(in Chinese) 46. 周中哲,陳昇陽(2010)「可更換核心板之挫屈束制消能支撐耐震試驗及有限元素分析」,結構工程,第二十五卷,第一期,43-70頁。 (in Chinese) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55412 | - |
dc.description.abstract | 預力型自復位斜撐(SCB)是利用斜撐中的拉力構件束制斜撐中的鋼受壓構件,並在斜撐受軸拉與受軸壓下提供自復位能力,即在大變形下有回到零殘餘變形的能力。在拉力構件相同應變下,傳統雙核心自復位斜撐變形量可達兩倍傳統單核心自復位斜撐變形量(或是在相同斜撐變形量下,拉力構件額外應變減少一半),有效降低拉力構件彈性應變需求。自復位斜撐使用摩擦板進行消能,經多組試驗後摩擦板耗損,消能效率降低。夾型挫屈束制斜撐(SBRB)是利用高強度螺栓將兩組獨立的圍束單元夾合核心消能構件,使得斜撐受軸壓下不會挫屈而產生十分飽滿的遲滯消能行為。本研究將挫屈束制系統消能機制取代摩擦消能機制,並結合挫屈束制系統及自復位系統,設計兩組不同配置方法的交錨型雙核心自復位夾型挫屈束制斜撐(長度7490 mm),並說明交錨型雙核心自復位夾型挫屈束制斜撐力學理論及預測方法,兩組斜撐之拉力構件均使用D16 mm鋼鉸線。本研究目的在於探討兩組不同配置方法的交錨型雙核心自復位夾型挫屈束制斜撐耐震行為差異。試驗結果顯示交錨型雙核心自復位夾型挫屈束制斜撐之傳力機制與理論預測相符。第一階段試驗之層間側位移角2%時,兩組自復位斜撐仍有良好的自復位行為。兩組自復位斜撐的最大斜撐應變皆為1.1%,分別對應最大拉力構件應變為0.80%,兩組斜撐最大軸力分別為1648 kN與1705 kN。兩組斜撐之挫屈束制系統最大軸壓核心應變可達1.5%,累積韌性容量可達1090-1129,大於AISC(2010)耐震規範建議之200。 | zh_TW |
dc.description.abstract | Self-Centering Brace (SCB) uses tendons to constrain steel compression member of the brace and provides self-centering properties under brace in tension and compression that is restored to zero residual deformation. Conventional dual-core SCB is two times brace deformation capacity than conventional single-core SCB under same strain of tendons (or reduce to half the additional strain of tendons under same brace deformation capacity) that effectively reduce the elastic strain demand of tendons.The Energy dissipating members experience serious wear, which reduces their energy dissipating efficiency and results in a need for replacement. Sandwiched Buckling-Restrained Brace (SBRB) uses two identical restraining members that sandwich the Energy Dissipative core with fully tensioned high-strength bolts to prevent core buckling and have stable hysteretic response. This study presents a cyclic behavior and self-centering behavior of Cross-Anchored Dual-Core Self-Centering Sandwiched Buckling- Restrained Brace (SC-SBRB). A SC-SBRB consists of a SBRB system, which provide energy dissipation, and self-centering system, which provide self-centering. The SC-SBRBs were Designed and tested two specimens (7490 mm long) with different member settings, tendons of two SC-SBRBs used same D16 mm steel strand. The objective was to compare the difference of seismic performance of SC-SBRBs. Test results indicate that the mechanism of SC-SBRBs is consistent with prediction. Under drift 2% of phase 1 test, two SC-SBRBs maintained good hysteretic response in self-centering behavior. Maximum brace strain of two SC-SBRBs were 1.1% corresponding to maximum tendons strain 0.80% and maximum load 1648 kN and 1705 kN, respectively. SBRB Systems can develop stable hysteretic responses up to a maximum core axial strain 1.5%, and cumulative plastic ductility 1090-1129 that is much higher than that specified the value of 200 in AISC seismic provisions (2010). | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T04:01:05Z (GMT). No. of bitstreams: 1 ntu-103-R01521216-1.pdf: 17147728 bytes, checksum: efb101e92581468ab36c7ea59b04a541 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 表目錄 viii 圖目錄 x 照片目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 5 1.4 研究目的 6 1.5 研究內容 6 第二章 交錨型雙核心自復位夾型挫屈束制斜撐之力學行為 7 2.1 前言 7 2.2 整體力學行為 7 2.2.1 交錨型雙核心自復位夾型挫屈束制斜撐(Type 1) 7 2.2.2 交錨型雙核心自復位夾型挫屈束制斜撐(Type 2) 9 2.2.3 交錨型雙核心自復位夾型挫屈束制斜撐之行為預測方法 12 2.2.3.1 初始預力下之受力與變形 12 2.2.3.2 核心消能構件降伏前 16 2.2.3.3 核心消能構件降伏後 19 2.2.3.4 討論 23 第三章 交錨型雙核心自復位夾型挫屈束制斜撐之試驗試體設計 24 3.1 水平側向位移與斜撐軸向位移之關係 24 3.2 挫屈束制系統設計 25 3.3 自復位系統之受壓構件斷面設計 30 3.4 自復位斜撐之拉力構件設計 33 3.5 交錨型雙核心自復位夾型挫屈束制斜撐之端板設計 34 3.6 各試體設計 34 3.7 材料性質 37 3.8 試體試驗構架裝置與加載歷時 37 3.8.1 油壓制動器 37 3.8.2 資料擷取系統 37 3.8.3 試驗加載歷時 38 3.8.4 試體韌性容量 38 3.8.5 試體等效阻尼比 39 3.8.6 試驗量測規劃 39 第四章 SC-SBRB試體試驗與結果 41 4.1 前言 41 4.2 試體製造與試驗方式 41 4.2.1 試體製造 42 4.2.2 拉力構件施拉預力 43 4.2.3 試驗方式 44 4.3 SC-SBRB 1試驗現象與結果分析 45 4.3.1 第一階段試驗 45 4.3.1.1 第一階段試驗現象 45 4.3.1.2 第一階段試驗結果分析 47 4.3.2 第二階段試驗至第五階段試驗 49 4.3.2.1 試驗現象 49 4.3.2.2 試驗結果分析 50 4.3.3 第六階段試驗 51 4.3.3.1 試驗現象 51 4.3.3.2 試驗結果分析 51 4.4 SC-SBRB 2試驗現象與結果分析 51 4.4.1 第一階段試驗 51 4.4.1.1 第一階段試驗現象 51 4.4.1.2 第一階段試驗結果分析 54 4.4.2 第二階段試驗至第五階段試驗 55 4.4.2.1 試驗現象 55 4.4.2.2 試驗結果分析 56 4.4.3 第六階段試驗 57 4.4.3.1 試驗現象 57 4.4.3.2 試驗結果分析 57 4.5 SC-SBRB試體理論預測與試驗結果 57 4.5.1 SC-SBRB 1與SC-SBRB 2理論預測與試驗結果 57 4.5.2 SC-SBRB 試體試驗結果比較 58 第五章 參數研究 62 5.1 模型1、2、3、4、5、6 62 5.2 模型7、8、9、10、11、12 63 5.3 模型13、14 63 5.4 參數研究分析結果 63 第六章 結論 65 參考文獻 68 附錄 182 | |
dc.language.iso | zh-TW | |
dc.title | 交錨型雙核心自復位夾型挫屈束制斜撐發展及試驗驗證 | zh_TW |
dc.title | Development and Cyclic Tests of Cross-Anchored Dual-Core Self-Centering Sandwiched Buckling-Restrained Braces (SC-SBRBs) | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅俊雄,黃尹男 | |
dc.subject.keyword | 交錨型雙核心自復位斜撐,夾型挫屈束制斜撐, | zh_TW |
dc.subject.keyword | Cross-Anchored Dual-Core Self-Centering Brace,Sandwiched Buckling-Restrained Brace, | en |
dc.relation.page | 187 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-10-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 16.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。