Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55407
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正弦(Cheng-Hsuan Chen)
dc.contributor.authorMing-Yuan Songen
dc.contributor.author宋明遠zh_TW
dc.date.accessioned2021-06-16T04:00:49Z-
dc.date.available2015-10-13
dc.date.copyright2015-02-03
dc.date.issued2014
dc.date.submitted2014-10-30
dc.identifier.citation[1] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
[2] E. J. W. Verwey, Nature 144, 327 (1939).
[3] J. P. Attfield, Solid State Sci. 8, 861 (2006).
[4] R. J. Goff and J. P. Attfield, Phys. Rev. B 70, 140404 (2004).
[5] F. Walz, J. Phys.: Condens. Matter 14, R285 (2001).
[6] M. Friak New J. Phys. 9, 5 (2007).
[7] L. R. Bickford, Rev. Mod. Phys. 25, 75 (1953).
[8] L. R. Bickford, Phys. Rev. 78, 449, May (1950) and the references therein.
[9] P. Novak, H. Štěpankova, J. Englich, J. Kohout, and V. A. M. Brabers, Phys. Rev. B 61, 1256 (2000).
[10] M. Iizumi and G. Shirane, Solid State Commun. 17, 433 (1975).
[11] J. Yoshida and S. Iida, J. Phys. Soc. Jpn. 42, 230 (1976).
[12] R. W. Miller, J. Am. Chem. Soc. , 51, 215 (1929).
[13] E. J. W. Verwey, P. W. Haayman, and C. W. Romeijn J. Chem. Phys. 15, 181 (1947).
[14] J. P. Wright, J. P. Attfield, and P. G. Radaelli, Phys. Rev. Lett., vol.87, pp. 266401 (2001).
[15] A. Yanase and K. Siratori, J. Pyhs. Soc. Jpn. 53,312 (1984).
[16] Z. Zhang and S. Satpathy, Phys. Rev. B 44, 13319 (1991).
[17] A. Yanase and N. Hamada, J. Phys. Soc. Jpn. 68, 1607 (1999).
[18] V. I. Anisimov, I. S. Elfimov, N. Hamada, and K. Terakura, Phys. Rev. B 54, 4387 (1996).
[19] V. N. Antonov, B. N. Harmon, V. P. Antropov, A. Y. Perlov, and A. N. Yaresko, Phys. Rev. B 64, 134410 (2001).
[20] Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, G. M. Stocks, and H. Winter, Phys. Rev. B 68, 054415 (2003).
[21] G. K. H. Madsen and P. Novak, Europhys. Lett. 69, 777 (2005).
[22] I. Leonov, A. N. Yaresko, V. N. Antonov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. Lett. 93, 146404 (2004).
[23] H. T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett. 93, 156403 (2004).
[24] J. R. Neal, A. J. Behan, A. Mokhtari, M. R. Ahmed, H. J. Blythe, A. M. Fox, and G. A. Gehring, J. Magn. Magn. Mater. 310, e246 (2007).
[25] A. Chainani, T. Yokoya, T. Morimoto, T. Takahashi, and S. Todo, Phys. Rev. B 51, 17976 (1995).
[26] J. H. Park, L. H. Tjeng, J. W. Allen, P. Metcalf, and C. T. Chen, Phys. Rev. B 55, 12813 (1997).
[27] D. Schrupp, M. Sing, M. Tsunekawa, H. Fujiwara, S. Kasai, A. Sekiyama, S. Suga, T. Muro, V. A. M. Brabers, and R. Claessen, Europhys. Lett. 70, 789 (2005).
[28] K. Renger Thesis Z‥urich (1913).
[29] P. Weiss and K. Renger, Arch. Elektrotechn. 11, 406 (1914)
[30] P. Weiss and R. Forrer, Ann. Phys. 12, 279 (1929).
[31] E. Goering, Phys. Status Solidi B 248, 2345 (2011).
[32] A. Tanaka,1 C. F. Chang, M. Buchholz, C. Trabant, E. Schierle, J. Schlappa, D. Schmitz, H. Ott, P. Metcalf, L. H. Tjeng, and C. Schusler-Langeheine, Phys. Rev. B 88, 195110 (2013).
[33] J. E. Lorenzo, C. Mazzoli, N. Jaouen, C. Detlefs, D. Mannix, S. Grenier, Y. Joly, and C. Marin, Phys. Rev. Lett., 101. 266401 (2008).
[34] P. W. Anderson, Phys. Rev. 102, 1008 (1956).
[35] J. R. Cullen and E. Callen J. Appl. Phys. 41, 879 (1970).
[36] N. F. Mott, Taylor and Francis, London, U.K., (1974).
[37] B. K. Chakraverty, Phil. Mag. 42, 473 (1980).
[38] Y. Yamada, AIP Conf. Proc. 24, 79 (1975).
[39] H. Seo, M. Ogata, and H. Fukuyama, Phys. Rev. B 65, 085107 (2002).
[40] J. van den Brink, and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).
[41] M. S. Senn, J. P. Wright, and J. P. Attfield, Nature 481, 173 (2012).
[42] H. P. Pinto and S. D. Elliott, J. Phys.: Condens. Matter 18, 10427 (2006).
[43] Y. S. Dedkov, U. Rudiger, and G. Guntherodt, Phys. Rev. B 65, 064417 (2002).
[44] D. J. Huang, C. F. Chang, J. Chen, L. H. Tjeng, A. D. Rata, W. P. Wu, S. C. Chung, H. J. Lin, T. Hibma, and C. T. Chen, J. Magn. Magn. Mater. 239, 261 (2002); S. A. Morton, G. D. Waddill, S. Kim, I. K. Schuller, S. A. Chambers, and J. G. Tobin, Surf. Sci. 513, L451 (2002); J. G. Tobin, S. A. Morton, S. W. Yu, G. D. Waddill, I. K. Schuller, and S. A. Chambers, J. Phys.: Condens. Matter 19, 315218 (2007); M. Fonin, Y. S. Dedkov, R. Pentcheva, U. Rudiger, and G. Guntherodt, J. Phys.: Condens. Matter 19, 315217 (2007).
[45] P. J. van der Zaag, P. J. H. Bloemen, J. M. Gaines, R. M. Wolf, P. A. A. van der Heijden, R. J. M. van de Veerdonk, and W. J. M. de Jonge, J. Magn. Magn. Mater. 211, 301 (2000).
[46] X. W. Li, A. Gupta, G. Xiao, W. Qian, and V. P. Dravid, Appl. Phys. Lett. 73, 3282 (1998).
[47] G. Hu and Y. Suzuki, Phys. Rev. Lett. 89, 276601 (2002).
[48] D. T. Margulies, F. T. Parker, F. E. Spada, R. S. Goldman, J. Li, R. Sinclair, and A. E. Berkowitz, Phys. Rev. B 53, 9175 (1995).
[49] B. Handke, J. Haber, T. Slezak, M. Kubik, J. Korecki, Vacuum 63, 331 (2001).
[50] F. Bertram, C Deiter, O Hoefert, T Schemme, F Timmer, M Suendorf, B Zimmermann and J Wollschlger, J. Phys. D: Appl. Phys. 45, 395302 (2012).
[51] S. K. Arora, R. G. S. Sofin, I. V. Shvets, R. Kumar, M. Wasi Khan, and J. P. Srivastava, J. Appl. Phys. 97, 10C310 (2005); Ravi Kumar, M. Wasi Khan, J. P. Srivastava, S. K. Arora, R. G. S. Sofin, R. J. Choudhary, and I. V. Shvets, J. Appl. Phys. 100, 033703 (2006); A. V. Ramos, J.-B. Moussy, M.-J. Guittet, A. M. Bataille, M. Gautier-Soyer, M. Viret, C. Gatel, P. Bayle-Guillemaud, and E. Snoeck, J. Appl. Phys. 100, 103902 (2006); W. Eerenstein, T. T. M. Palstra, T. Hibma, and S. Celotto, Phys. Rev. B 66, 201101 (2002); R. G. S. Sofin, S. K. Arora, and I. V. Shvets, Phys. Rev. B 83, 134436 (2011).
[52] X. H. Liu, A. D. Rata, C. F. Chang, A. C. Komarek, and L. H. Tjeng, Phys. Rev. B 90, 125142 (2014).
[53] M. G. Chapline and S. X. Wang, J. Appl. Phys. 97, 123901 (2005); M. Bohra, N. Venkataramani, S. Prasad, N. Kumar, D.S. Misra, S.C. Sahoo, and R. Krishnan, J. Magn. Magn. Mater. 310, 2242 (2007); S. P. Sena, R. A. Lindley, H. J. Blythe, Ch. Sauer, M. A1-Kafarji, and G. A. Gehring, J. Magn. Magn. Mater. 176, 111 (1997); G. Q. Gong, A. Gupta, Gang Xiao, W. Qian, and V. P. Dravid, Phys. Rev. B 56, 5096 (1997).
[54] F. C. Voogt, T. T. M. Palstra, L. Niesen, O. C. Rogojanu, M. A. James, and T. Hibma, Phys. Rev. B 57 R8108 (1998).
[55] F. C. Voogt, T. Fujii, P. J. M. Smulders, L. Niesen, M. A. James, and T. Hibma, Phys. Rev. B 60, 11193 (1999).
[56] W. Zhang, J. Z. Zhang, P. K. J. Wong, Z. C. Huang, L. Sun, J. L. Liao, Y. Zhai, Y. B. Xu, and G. van der Laan, Phys. Rev. B 84, 104451 (2011).
[57] Z. C. Huang, Y. Zhai, Y. X. Lu, G. D. Li, P. K. J. Wong, Y. B. Xu, Y. X. Xu, and H. R. Zhai, Appl. Phys. Lett. 92, 113105 (2008).
[58] M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima, S. Picozzi, and U. Go‥sele, Adv. Mater. 21, 4452 (2009).
[59] Imada, Fujimori, and Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[60] T. Oka, and H. Aoki, edited by B. K. Chakrabarti, K. K. Bardhan, and A. K. Sen (Springer Berlin / Heidelberg, 2009).
[61] J. P. Wright, J. P. Attfield, and P. G. Radaelli, Phys. Rev. B 66, 214422 , (2002).
[62] N. E. Brese, and M. O’Keeffe, Acta Cryst. B 47, 192 (1991).
[63] J. Blasco, J. Garc’ıa, and G. Sub’ıas, Phys. Rev. B 83,104105 (2011).
[64] J. Garcı’a, G. Subı’as, J. Herrero-Martı’n, J. Blasco, V. Cuartero, M. C. Sa’nchez, C. Mazzoli, and F. Yakhou, Phys. Rev. Lett. 102, 176405 (2009).
[65] R. Schmidt, A. Basu, and A. W. Brinkman, Phys. Rev. B 72, 115101 (2005).
[66] L. Landau, Phys. Z. Sowjetunion 3, 644 (1933)
[67] T. Holstein, Ann. Phys. 8, 325 (1959).
[68] M. Farle, Rep. Prog. Phys. 61, 755(1998).
[69] J. Pelzl, R. Meckenstock, D. Spoddig, F. Schreiber, J. Pflaum and Z. Frait, J. Phys.: Condens. Matter. 15, S451 (2003).
[70] J. Lindner and K. Baberschke, J. Phys.: Condens. Matter. 15, S465 (2003).
[71] R. Meckenstock, D. Spoddig, K. Himmelbauer, H. Krenn, M. Doi, W. Keune, Z. Frait, and J. Pelzl, J. Magn. Magn. Mater. 240, 410, (2002).
[72] S. V. Vonsovskii, “Ferromagnetic Resonance.” Pergamon Press, (1966).
[73] A. R. Muxworthy and E. McClelland, Geophys. J. Int. 140, 101 (2000).
[74] L. B. Valdes, In Proceedings of the IRE 1954, 420 (1954).
[75] F. M. Smits, BSTJ 37, 371 (1958).
[76]Y. J. Kim, Y. Gao, and S. A. Chambers, Surf. Sci. 371, 358 (1997).
[77] S. A. Chambers and S. A. Joyce, Surf. Sci. 420, 111 (1999).
[78] J. L. Verble, Phys. Rev. B 9, 5236 (1974).
[79] M. B. Yazdi, K. Y. Choi, D. Wulferding, P. Lemmens and L. Alff, New J. Phys. 15, 103032 (2013).
[80] M. Iizumi, T. F. Koetzle, G. Shirane, S. Chikazumi, M. Matsui, and S. Todo, Acta Crystallogr., Sect. B: Struct. Sci. 39, 2121 (1983).
[81] W. R. McKinnon, C. M. Hurd and I. Shiozaki J. Phys. C: Solid State Phys. 14, L877 (1981).
[82] A. Kumar, D. K. Pandya and S. Chaudhary J. Appl. Phys. 112, 073909 (2012).
[83] J. H. V. J. Brabers, F. Walz and H. Kronmuller, J. Phys.:Condens. Matter 12, 5437 (2000).
[84] J. M. Zuo, J. C. H. Spence, and W. Petuskey, Phys. Rev. B 42, 8451 (1990).
[85] J. R. Cullen and E. R. Callen, Phys. Rev. Lett. 26, 236 (1971).
[86] J. R. Cullen and E. R. Callen, Phys. Rev. B 7, 397 (1973).
[87] P. A. A. van der Heijden, M. G. van Opstal, C. H. W. Swuste, P. H. J. Bloemen, J. M. Gaines, and W. J. M. de Jonge, J. Magn.. Mag. Mater. 182, 71 (1998).
[88] S. Budak, F. Yildiz, M. Ozdemir, and B. Aktas, J. Magn. Magn. Mater. 258, 423 (2003).
[89] S. Kale, S. M. Bhagat, S. E. Lofland, T. Scabarozi, S. B. Ogale, A. Orozco, S. R. Shinde, T. Venkatesan, B. Hannoyer, B. Mercey, and W. Prellier, Phys. Rev. B 64, 205413 (2001).
[90]Y. Zhai, Z. C. Huang, Y. Fu, C. Ni, Y. X. Lu, Y. B. Xu, J. Wu and H. R. Zhai, J. Appl. Phys. 101, 09D126 (2007).
[91] Z. C. Huang, X. F. Hu, Y. X. Xu, Y. Zhai, Y. B. Xu, J. Wu, and H. R. Zhai, J. Appl. Phys. 111, 07C108 (2012).
[92] K. P. Belov, JETP 36, 1152 (1996).
[93] S. V. Vonsovskii, J. Phys. 10, 468 (1946).
[94] J. S Thropp and A. R. Skinner, J. Magn. Magn. Mater. 69, 34 (1987).
[95] R. Ramos, S. K. Arora, and I. V. Shvets, Phys. Rev. B 78, 214402 (2008).
[96] M. Bimbi, G. Allodi, R. De Renzi, G. Mazzoli, H. Berger, and A. Amato, Phys. B-Condens. Matter 374, 51 (2006).
[97] P. Piekarz, K. Parlinski, and A. M. Oleś Phys. Rev. B 76, 165124 (2007).
[98] L. V. Gasparov, A. Rush, G. Guntherodt and H. Berger, Phys. Rev. B 79, 144303 (2009).
[99] J. Brockman’s Ph. D thesis, Stanford University, (2012)
[100] D. M. Phase, S. Tiwari, R. Prakash, A. Dubey, V. G. Sathe, and R. J. Choudhary, J. Appl. Phys. 100, 123703 (2006).
[101] L. V. Gasparov, D. B. Tanner, D. B. Romero, H. Berger, G. Margaritondo and L. Forro, Phys. Rev. B 62, 7939 (2000).
[102] R. Gupta, A. K. Sood, P. Metcalf, and J. M. Honig, Phys. Rev. B 65, 104430 (2002).
[103] T. Hibma, F. C. Voogt, L. Niesen, P. A. A. van der Heijden, W. J. M. de Jonge, J. J. T. M. Donkers, and P. J. van der Zaag, J. Appl. Phys. 85, 5291 (1999).
[104] J. H. V. J. Brabers, F. Walz and H. Kronmuller, J. Phys.:Condens. Matter, 11, 3679 (1999).
[105] P. A. Miles, W. B. Westphal, and A. von Hippel, Rev. Mod. Phys. 29, 279 (1957).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55407-
dc.description.abstract以一個最廣為科學家研究的材料而言,四氧化三鐵已經激勵了許多科學家及研究學者一段非常長的歲月。四氧化三鐵同時也是一個非常有開發潛能的材料,它可以廣泛的應用在磁儲存、磁異向性以及自旋子電子元件等方面。其晶格結構、電子傳導、磁化率以及比熱量測的結果都顯示該材料具有一個相轉換且溫度大約在123凱氏溫度。這些現象的解釋及理論模型依然在討論之中。因為在現在元件的應用中薄膜是最為大量採用的,為了成功的實現在自旋電子元件方面的應用,薄膜的成長技術是相當重要的關鍵。
本研究採用分子束磊晶技術成長高品質的四氧化三鐵薄膜,並且使用反射式高能電子繞射儀來監測薄膜的成長,再利用各樣的量測確認薄膜的品質,確認完之後採用最高品質的薄膜進行鐵磁共振的研究。本研究量測電性轉變及磁晶格異向性的關聯性,實驗的結果顯示了各個相轉變溫度並不一致。以拉曼光譜研究晶格振動膜式,以物理性質量測系統測量電子電阻率,以鐵磁共振量測樣品的磁晶格異向性。比較了以上的結果,顯示出維爾威的轉換應是一種楊-泰勒式的相轉換。較薄的樣品有較低的磁晶格相轉換溫度是由於楊-泰勒效應與應力效應相抗衡而產生的結果。本次研究提供了更多的資訊有關於在四氧化三鐵薄膜中,磁晶格異向性相轉換及應力作用所產生的影響。
zh_TW
dc.description.abstractBeing one of the most studied materials, magnetite, Fe3O4, has inspired scientists and researchers for a very long time -- a long running mystery. It is also a potential material for the applications in magnetic storage, magnetic anisotropy and spin injection. A special phase transition (so called Verwey transition) in crystal structure, electric transport, magnetization and heat capacitance was observed at ~123K and the origin of this phenomenon is still under debates. Toward to the success of fabricating spintronic devices, the growth and characterization of Fe3O4 thin film is essential and extremely important.
In our present work, a Molecule-Beam-Epitaxy is adopted to grow high quality Fe3O4 films with various thicknesses and the growth condition is monitored by a real-time Reflex High Energy Electron Diffraction. After the confirmation of the sample quality, the best samples are chosen for the ferromagnetic resonance (FMR) studies. Temperature dependent FMR spectra and magnetocrystalline anisotropy are studied at various temperatures. Experimental results show that the transitions of lattice vibration, electrical conductivity and magnetocrystalline anisotropy all occur at different temperatures. Therefore, the origin of Verwey transition is suggested to be a Jahn-Teller type distortion. Furthermore, a lower transition temperature of magnetocrystalline in thinner film is attributed to a competition between Jahn-Teller effect and strain. This study provides a better understanding on the magnetocrystalline transition as well as the influence of the strain effect for Fe3O4 film.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T04:00:49Z (GMT). No. of bitstreams: 1
ntu-103-D97222009-1.pdf: 4113024 bytes, checksum: 7fe3ed61cd8cd6f637d62ed0dd19dee3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAcknowledgement i
中文摘要 ii
Abstract iii
List of tables xi
Chapter 1 Introduction 1
1.1 History of magnetite 1
1.2 Properties of bulk magnetite 2
1.2.1 Structure 2
1.2.2 Electrical properties 5
1.2.3 Magnetic properties 7
1.2.4 Verwey transition 9
1.3 Magnetite thin films 11
1.4 Motivation 16
1.5 Dissertation structure 17
Chapter 2 Theories 18
2.1 Mechanism of Metal-insulator Transition (MIT) 20
2.2 Mechanism of Verwey Transition in Fe3O4 23
2.3 Hopping transport 26
2.4 Ferromagnetic Resonance 29
2.5 Magnetic Anisotropy Energy 34
Chapter 3 Experimental procedures 37
3.1 Film Deposition 37
3.2 Film growth and sample list 39
3.3 Film Characterization 41
3.3.1 X-ray diffraction 41
3.3.2 Four-probe Measurement 42
3.3.3 Reflection high-energy electron diffraction (RHEED) 43
3.3.4 Atomic force microscopy (AFM) 44
3.4 Ferromagnetic Resonance (FMR) 45
Chapter 4 Results and Discussions 47
4.1 Morphology 47
4.2 Crystal structure 50
4.3 Raman spectroscopy 55
4.4 Electrical conductivity 61
4.4.1 Iron/Oxygen ratio 61
4.4.2 Thickness dependent 68
4.5 Ferromagnetic Resonance 76
4.5.1 Temperature dependence 77
4.5.2 Angular dependence 88
4.6 Summary 95
Chapter 5 Conclusions 97
Reference 98
List of publications 104
dc.language.isoen
dc.title以鐵磁共振法研究四氧化三鐵薄膜之維爾威轉換zh_TW
dc.titleFerromagnetic resonance study on the Verwey transition of epitaxial Fe3O4 thin films.en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.coadvisor林昭吟(Jauyn Grace Lin)
dc.contributor.oralexamcommittee朱明文(Ming-Wen Chu),鄭弘泰(Horng-Tay Jeng),呂欽山(Chin-Shan Lue)
dc.subject.keyword鐵磁共振,四氧化三鐵,磁異向性,zh_TW
dc.subject.keywordferromagnetic resonance,Fe3O4,magnetic anisotropy,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2014-10-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved