Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55393
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 宋孔彬(Kung-Bin Sung) | |
dc.contributor.author | Jing-Wei Su | en |
dc.contributor.author | 蘇璟瑋 | zh_TW |
dc.date.accessioned | 2021-06-16T04:00:06Z | - |
dc.date.available | 2017-12-24 | |
dc.date.copyright | 2014-12-24 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-11-12 | |
dc.identifier.citation | [1] “The top 10 causes of death,” World Health Organization, 2014.
[2] “102年度死因統計,” 中華民國衛生福利部, 2014. [3] A. E. Sayan, “Tumour-promoting role of EMT-inducing transcription factor ZEB1 in mantle cell lymphoma,” Cell Death Differ, vol. 21, no. 2, pp. 194–195, Feb. 2014. [4] I. Damjanov and F. Fan, Cancer Grading Manual. Springer Berlin Heidelberg, 2007. [5] R. Barer and S. Joseph, “Refractometry of Living Cells: Part I. Basic Principles,” Q. J. Microsc. Sci., vol. s3–95, no. 32, pp. 399–423, 1954. [6] R. Barer, “Interference Microscopy and Mass Determination,” Nature, vol. 169, no. 4296, pp. 366–367, Mar. 1952. [7] B. S. Chincholi, A. J. Havlik, and R. D. Vold, “Specific refractive index increments of polymer systems at four wavelengths,” J. Chem. Eng. Data, vol. 19, no. 2, pp. 148–152, Apr. 1974. [8] R. Drezek, A. Dunn, and R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express, vol. 6, no. 7, pp. 147–157, Mar. 2000. [9] A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” Sel. Top. Quantum Electron. IEEE J. Of, vol. 2, no. 4, pp. 898–905, Dec. 1996. [10] D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, and R. R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt., vol. 8, no. 3, pp. 484–494, 2003. [11] D. Arifler, C. MacAulay, M. Follen, and M. Guillaud, “Numerical investigation of two-dimensional light scattering patterns of cervical cell nuclei to map dysplastic changes at different epithelial depths,” Biomed. Opt. Express, vol. 5, no. 2, pp. 485–498, Feb. 2014. [12] R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt., vol. 8, no. 1, pp. 7–16, 2003. [13] R. Scott Brock, X.-H. Hu, D. A. Weidner, J. R. Mourant, and J. Q. Lu, “Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images,” Opt. Biol. Part., vol. 102, no. 1, pp. 25–36, Nov. 2006. [14] H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt., vol. 1, no. 2, pp. 200–211, 1996. [15] A. Brunsting and P. F. Mullaney, “Differential Light Scattering from Spherical Mammalian Cells,” Biophys. J., vol. 14, no. 6, pp. 439–453, Jun. 1974. [16] M. Kohl, M. Essenpreis, D. Bocker, and M. Cope, “Influence of glucose concentration on light scattering intissue-simulating phantoms,” Opt. Lett., vol. 19, no. 24, pp. 2170–2172, Dec. 1994. [17] I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and thermal char- acterization of natural (sepia oficinalis) melanin,” Photochem. Photobiol., vol. 59, no. 4, pp. 455–462, 1994. [18] J Beuthan and O Minet and J Helfmann and M Herrig and G Muller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol., vol. 41, no. 3, p. 369, 1996. [19] J. Bereiter-Hahn, C. H. Fox, and B. Thorell, “Quantitative reflection contrast microscopy of living cells.,” J. Cell Biol., vol. 82, no. 3, pp. 767–779, 1979. [20] D. R. Lowy and J. T. Schiller, “Prophylactic human papillomavirus vaccines,” J. Clin. Invest., vol. 116, no. 5, pp. 1167–1173, May 2006. [21] L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging. Wiley-Interscience, 2007. [22] A. T. L. V. Lommel, From Cells to Organs: A Histology Textbook and Atlas. Springer, 2002. [23] T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, “Determination of epithelial tissue scattering coefficient using confocal microscopy,” Sel. Top. Quantum Electron. IEEE J. Of, vol. 9, no. 2, pp. 307–313, Apr. 2003. [24] J. Yi, A. J. Radosevich, J. D. Rogers, S. C. P. Norris, İ. R. Capoğlu, A. Taflove, and V. Backman, “Can OCT be sensitive to nanoscale structural alterations in biological tissue?,” Opt. Express, vol. 21, no. 7, pp. 9043–9059, Apr. 2013. [25] V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt., vol. 16, no. 6, pp. 067007–067007–14, 2011. [26] J. D. Rogers, A. Radosevich, Ji Yi, and V. Backman, “Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function,” Sel. Top. Quantum Electron. IEEE J. Of, vol. 20, no. 2, pp. 173–186, Apr. 2014. [27] J. D. Rogers, İ. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett., vol. 34, no. 12, pp. 1891–1893, Jun. 2009. [28] J. Yi, A. J. Radosevich, Y. Stypula-Cyrus, N. N. Mutyal, S. M. Azarin, E. Horcher, M. J. Goldberg, L. K. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography,” J. Biomed. Opt., vol. 19, no. 3, pp. 036013–036013, 2014. [29] B. S. Chincholi, A. J. Havlik, and R. D. Vold, “Specific refractive index increments of polymer systems at four wavelengths,” J. Chem. Eng. Data, vol. 19, no. 2, pp. 148–152, Apr. 1974. [30] A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman, “Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation,” Opt. Lett., vol. 37, no. 24, pp. 5220–5222, Dec. 2012. [31] A. J. Radosevich, N. N. Mutyal, J. Yi, Y. Stypula-Cyrus, J. D. Rogers, M. J. Goldberg, L. K. Bianchi, S. Bajaj, H. K. Roy, and V. Backman, “Ultrastructural alterations in field carcinogenesis measured by enhanced backscattering spectroscopy,” J. Biomed. Opt., vol. 18, no. 9, pp. 097002–097002, 2013. [32] A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular Organization and Substructure Measured Using Angle-Resolved Low-Coherence Interferometry,” Biophys. J., vol. 82, no. 4, pp. 2256–2264. [33] R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat Med, vol. 7, no. 11, pp. 1245–1248, Nov. 2001. [34] L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of Periodic Fine Structure in Reflectance from Biological Tissue: A New Technique for Measuring Nuclear Size Distribution,” Phys. Rev. Lett., vol. 80, no. 3, pp. 627–630, Jan. 1998. [35] V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” Sel. Top. Quantum Electron. IEEE J. Of, vol. 5, no. 4, pp. 1019–1026, Aug. 1999. [36] W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat Meth, vol. 4, no. 9, pp. 717–719, Sep. 2007. [37] J.-W. Su, W.-C. Hsu, C.-Y. Chou, C.-H. Chang, and K.-B. Sung, “Digital holographic microtomography for high-resolution refractive index mapping of live cells,” J. Biophotonics, vol. 6, no. 5, pp. 416–424, 2013. [38] Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett., vol. 36, no. 7, pp. 1215–1217, Apr. 2011. [39] M Hammer and A Roggan and D Schweitzer and G Muller, “Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol., vol. 40, no. 6, p. 963, 1995. [40] R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt., vol. 13, no. 4, pp. 041309–041309–7, 2008. [41] K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express, vol. 5, no. 1, pp. 322–337, Jan. 2014. [42] J. Yi and V. Backman, “Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography,” Opt. Lett., vol. 37, no. 21, pp. 4443–4445, Nov. 2012. [43] J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt., vol. 32, no. 30, pp. 6032–6042, Oct. 1993. [44] A. Knu‥ttel, S. Bonev, and W. Knaak, “New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography,” J. Biomed. Opt., vol. 9, no. 2, pp. 265–273, 2004. [45] Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt., vol. 16, no. 9, pp. 090504–090504–3, 2011. [46] Y. Yang, T. Wang, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, “Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization,” Biomed. Opt. Express, vol. 3, no. 7, pp. 1548–1556, Jul. 2012. [47] I. V. Turchin, E. A. Sergeeva, L. S. Dolin, V. A. Kamensky, N. M. Shakhova, and R. Richards-Kortum, “Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies,” J. Biomed. Opt., vol. 10, no. 6, pp. 064024–064024–11, 2005. [48] D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express, vol. 12, no. 2, pp. 249–259, Jan. 2004. [49] J. Qu, C. MacAulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt., vol. 33, no. 31, pp. 7397–7405, Nov. 1994. [50] R. Samatham and S. L. Jacques, “Determine scattering coefficient and anisotropy of scattering of murine tissues using reflectance-mode confocal microscopy,” 2013, vol. 8592, p. 85920U–85920U–7. [51] A. Zvyagin, K. K. M. B. Silva, S. Alexandrov, T. Hillman, J. Armstrong, T. Tsuzuki, and D. Sampson, “Refractive index tomography of turbid media by bifocal optical coherence refractometry,” Opt. Express, vol. 11, no. 25, pp. 3503–3517, Dec. 2003. [52] M. Sand, T. Gambichler, G. Moussa, F. G. Bechara, D. Sand, P. Altmeyer, and K. Hoffmann, “Evaluation of the epidermal refractive index measured by optical coherence tomography,” Skin Res. Technol., vol. 12, no. 2, pp. 114–118, 2006. [53] John D. Bancroft and Marilyn Gamble, Theory and Practice of Histological Techniques, 6th ed. Churchill Livingstone, 2007. [54] H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A, vol. 402, no. 2, pp. 195–201, Jun. 1983. [55] C. N. C. Crawford and R. Barer, “The Action of Formaldehyde on Living Cells as Studied by Phase-contrast Microscopy,” Q. J. Microsc. Sci., vol. s3–92, no. 20, pp. 403–452, 1951. [56] K. F. A. ROSS, “Cell Shrinkage caused by Fixatives and Paraffin-wax Embedding in Ordinary Cytological Preparations,” Q. J. Microsc. Sci., vol. s3–94, no. 26, pp. 125–139, 1953. [57] H. Aung, B. DeAngelo, J. Soldano, P. Kostyk, B. Rodriguez, and M. Xu, “On alterations in the refractive index and scattering properties of biological tissue caused by histological processing,” 2013, vol. 8592, p. 85920X–85920X–8. [58] D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat Rev Cancer, vol. 4, no. 9, pp. 677–687, Sep. 2004. [59] Y. Zhu, N. G. Terry, and A. Wax, “Angle-resolved low-coherence interferometry: an optical biopsy technique for clinical detection of dysplasia in Barrett’s esophagus,” Expert Rev. Gastroenterol. Hepatol., vol. 6, no. 1, pp. 37–41, Feb. 2012. [60] M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett., vol. 33, no. 21, pp. 2452–2454, Nov. 2008. [61] R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt., vol. 14, no. 6, pp. 064030–064030–8, 2009. [62] N. G. Terry, Y. Zhu, M. T. Rinehart, W. J. Brown, S. C. Gebhart, S. Bright, E. Carretta, C. G. Ziefle, M. Panjehpour, J. Galanko, R. D. Madanick, E. S. Dellon, D. Trembath, A. Bennett, J. R. Goldblum, B. F. Overholt, J. T. Woosley, N. J. Shaheen, and A. Wax, “Detection of Dysplasia in Barrett’s Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements,” Gastroenterology, vol. 140, no. 1, pp. 42–50. [63] N. Terry, Y. Zhu, J. K. M. Thacker, J. Migaly, C. Guy, C. R. Mantyh, and A. Wax, “Detection of intestinal dysplasia using angle-resolved low coherence interferometry,” J. Biomed. Opt., vol. 16, no. 10, pp. 106002–106002–6, 2011. [64] F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express, vol. 17, no. 8, pp. 6799–6812, Apr. 2009. [65] C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Munger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer, vol. 122, no. 2, pp. 363–371, 2008. [66] M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology, vol. 119, no. 3, pp. 677–682, Sep. 2000. [67] W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett., vol. 33, no. 14, pp. 1596–1598, Jul. 2008. [68] K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In situ Assessment of Intraepithelial Neoplasia in Hamster Trachea Epithelium Using Angle-Resolved Low-Coherence Interferometry,” Cancer Epidemiol. Biomarkers Prev., vol. 16, no. 2, pp. 223–227, 2007. [69] F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett., vol. 35, no. 3, pp. 360–362, Feb. 2010. [70] L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat Med, vol. 16, no. 5, pp. 603–606, May 2010. [71] A. Hsiao, M. Hunter, C. Greiner, S. Gupta, and I. Georgakoudi, “Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy,” J. Biomed. Opt., vol. 16, no. 3, pp. 037007–037007–9, 2011. [72] R. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express, vol. 13, no. 12, pp. 4693–4698, Jun. 2005. [73] C. Wang, X. Guo, B. Fang, and C. Song, “Study of back-scattering microspectrum for stomach cells at single-cell scale,” J. Biomed. Opt., vol. 15, no. 4, pp. 040505–040505–3, 2010. [74] M. Xu, T. T. Wu, and J. Y. Qu, “Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures,” J. Biomed. Opt., vol. 13, no. 2, pp. 024015–024015–9, 2008. [75] G.-S. Chao and K.-B. Sung, “Investigating the spectral characteristics of backscattering from heterogeneous spherical nuclei using broadband finite-difference time-domain simulations,” J. Biomed. Opt., vol. 15, no. 1, pp. 015007–015007–6, 2010. [76] M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express, vol. 17, no. 22, pp. 19674–19681, Oct. 2009. [77] K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-Free, High-Throughput Measurements of Dynamic Changes in Cell Nuclei Using Angle-Resolved Low Coherence Interferometry,” Biophys. J., vol. 94, no. 12, pp. 4948–4956, Jun. 2008. [78] F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett., vol. 31, no. 2, pp. 178–180, Jan. 2006. [79] Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat Photon, vol. 7, no. 2, pp. 113–117, Feb. 2013. [80] Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express, vol. 17, no. 1, pp. 266–277, Jan. 2009. [81] S. M. Baker-Groberg, K. G. Phillips, and O. J. T. McCarty, “Quantification of volume, mass, and density of thrombus formation using brightfield and differential interference contrast microscopy,” J. Biomed. Opt., vol. 18, no. 1, pp. 016014–016014, 2013. [82] C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A, vol. 65A, no. 1, pp. 88–92, 2005. [83] C. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt., vol. 16, no. 1, pp. 011005–011005–5, 2011. [84] Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci., vol. 105, no. 37, pp. 13730–13735, Sep. 2008. [85] K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt., vol. 19, no. 1, pp. 011005–011005, 2013. [86] F. Zernike, “How I Discovered Phase Contrast,” Science, vol. 121, no. 3141, pp. 345–349, Mar. 1955. [87] G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett., vol. 31, no. 6, pp. 775–777, Mar. 2006. [88] P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci Appl, vol. 3, p. e151, Mar. 2014. [89] T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett., vol. 30, no. 10, pp. 1165–1167, May 2005. [90] Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express, vol. 19, no. 2, pp. 1016–1026, Jan. 2011. [91] E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun., vol. 1, no. 4, pp. 153–156, Sep. 1969. [92] R. Leach, Optical Measurement of Surface Topography. Springer, 2011. [93] H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative phase imaging using actively stabilized phase-shiftinglow-coherence interferometry,” Opt. Lett., vol. 29, no. 20, pp. 2399–2401, Oct. 2004. [94] Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,” Opt. Lett., vol. 29, no. 14, pp. 1671–1673, Jul. 2004. [95] S. R. Deans, The Radon Transform and Some of Its Applications. Dover Publications, 2007. [96] S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-view and limited-angle data in diffraction tomography,” J. Opt. Soc. Am. A, vol. 25, no. 7, pp. 1772–1782, Jul. 2008. [97] Allen Taflove and Susan C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, 2005. [98] J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt., vol. 32, no. 4, pp. 399–410, Feb. 1993. [99] A. C. Kak and Malcolm Slaney, Principles of Computerized Tomographic Imaging. Society for Industrial and Applied Mathematics, 2001. [100] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” Syst. Man Cybern. IEEE Trans. On, vol. SMC-3, no. 6, pp. 610–621, Nov. 1973. [101] L. L. Deck, “Suppressing phase errors from vibration in phase-shifting interferometry,” Appl. Opt., vol. 48, no. 20, pp. 3948–3960, Jul. 2009. [102] “Phase Contrast and DIC Comparison Image Gallery,” Microscopyu. [103] Rafael C. Gonzalez and Richard E. Woods, Digital image processing, 3rd ed. Prentice Hall, 2007. [104] İ. R. Capoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett., vol. 34, no. 17, pp. 2679–2681, Sep. 2009. [105] R. Bacallao, S. Sohrab, and C. Phillips, “Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy,” in Handbook Of Biological Confocal Microscopy, J. B. Pawley, Ed. Springer US, 2006, pp. 368–380. [106] K.-B. Sung, K.-W. Shih, F.-W. Hsu, H.-P. Hsieh, M.-J. Chuang, Y.-H. Hsiao, Y.-H. Su, and G.-H. Tien, “Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra,” J. Biomed. Opt., vol. 19, no. 7, pp. 077002–077002, 2014. [107] J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, and J. P. Freyer, “Light scattering from cells: the contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt., vol. 5, no. 2, pp. 131–137, 2000. [108] A. Brunsting and P. F. Mullaney, “Differential Light Scattering from Spherical Mammalian Cells,” Biophys. J., vol. 14, no. 6, pp. 439–453. [109] K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: isit sensitive to cellular and nuclear morphology,” Opt. Express, vol. 5, no. 13, pp. 302–317, Dec. 1999. [110] C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A, vol. 65A, no. 1, pp. 88–92, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55393 | - |
dc.description.abstract | 癌症已然成為全球主要死亡原因之一,多數癌症的發生源自於上皮細胞層病變。癌症發生的同時將會伴隨細胞結構的改變,進而影響光學散射特性。即使,已經有許多研究團隊提出不同的光學散射診斷技術;然而,由於缺乏真實細胞與組織的三維折射率結構,因此細胞和組織的真實結構和散射的關聯性難以完整地探討與分析。因此,此研究目的主要發展定量三維折射率顯微鏡,應用此顯微鏡量測細胞和組織的折射率結構後,再使用時域有限差分法和散射相位理論模擬與計算細胞和組織光學散射特性。由食道切片實驗結果發現:組織的散射係數可以作為區分正常與癌前病變上皮組織的指標,癌前病變上皮組織散射係數高於正常組織45.2%。散射係數的上升源自於病變過程時,細胞核密度與核質比的上升;更重要的是,組織、細胞的折射率結構變化也是影響散射係數的重要參數之一。而在細胞逆散射的模擬結果呈現:組織內細胞的細胞逆散射光譜震盪主要來自於細胞核的貢獻。因此,細胞核的軸向和橫向尺寸可以分別藉由米氏散射定理擬合逆散射光譜與逆散射角度分布得知。藉由量測細胞核的尺寸,可以用來區分的正常與癌前病變的複層鱗狀上皮組織。總結,這篇論文提出研究方法除了可用以分析複層鱗狀上皮組織結構與散射關聯性外,也可應用於其它的細胞與組織研究。正常與癌前病變食道上皮細胞層散射係數的研究結果顯示漫反射技術可用於偵測上皮組織的癌前病變。此外,伴隨細胞核變大的癌前上皮組織,如子宮頸,也可利用角度或光譜逆散射強度分布配合米氏定理估計細胞核尺寸以達到早期診斷。 | zh_TW |
dc.description.abstract | Cancer is one of the main causes of death in the world. Most cancers are of epithelial origin. The progression of epithelial dysplasia, a precursor of many tumors of stratified squamous epithelia, is accompanied by changes of tissue and cellular structures in the epithelium. These changes in structure are expected to alter light scattering properties of the cells and tissue. Although many light scattering diagnostic techniques have been proposed for diagnosing cancers, the complete and quantitative understanding of the correlation between scattering properties and structures of epithelial cells/tissue was difficult due to lack of realistic quantitative refractive indices distributions of cells/tissue. The current study aimed to propose a method for investigating the correlation between structures and light scattering properties of epithelial cells and tissue. Firstly, the three-dimensional refractive index microscope was developed and used for measuring the structures of cells and tissue. The scattering properties of cells and tissue were obtained by the finite-difference time-domain tool and the scattering-phase theorem. The results of investigating esophageal epithelia demonstrate that the average scattering coefficient of the precancerous epithelia was 45.2% higher than that of normal epithelia. The parameters that mainly determine the scattering coefficients are the cell density and the nuclear-to-cytoplasmic ratio which are the common indicators of histological diagnosis. The standard deviation of refractive indices of epithelial cells and tissue is also important parameter. The study of backscattering of single cell presents that for in vivo cells periodic oscillations in spectral and angular backscattering patterns are mainly dependent on the axial and transversal sizes of nuclei. The nuclear size can be extracted by fitting backscattering patterns with Mie theory. The precancerous and normal cells, for example, cervical cells, can be distinguished by estimating the nuclear sizes. In summary, the proposed analysis method can be extended for investigating the correlation between structures and scattering properties of any cells and tissue in addition to stratified squamous epithelial tissue. The study of the scattering coefficients of epithelial tissue suggests that the epithelial precancers can be early detected by using diffuse reflectance techniques measuring scattering coefficients of in vivo tissue. Additionally, the precancers of epithelial tissue, accompanied by enlarged nuclei, can be also diagnosed by sizing nuclear size by either angular or spectral backscattering patterns with Mie theory. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T04:00:06Z (GMT). No. of bitstreams: 1 ntu-103-F97945050-1.pdf: 7419491 bytes, checksum: a3173bf9820e31819d2cca8e1a96c8f8 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Background 1 1.2 Light Scattering Properties of Epithelial Cells and Tissue 6 1.3 Backscattering Properties of Single Epithelial Cells 10 1.4 Specific Aims 15 Chapter 2 Research Methods 16 2.1 Introduction 16 2.2 Development of the 3D RI Microscope: Digital Holographic Microscope (DHM) 18 2.2.1 Optical Configuration 18 2.2.2 Advanced Iterative Algorithm 20 2.2.3 Optical Diffraction Tomography (ODT) 22 2.2.4 Optical Diffraction Tomography with Projection on Convex Sets and Total Variation Minimization (ODT-POCS&TV) 25 2.3 Finite-Difference Time-Domain (FDTD) Method 28 2.3.1 Principle 28 2.3.2 Validation: Comparison with Mie Theory 30 2.4 Radiative Transport Equation and Scattering-Phase Theorem 32 2.4.1 Radiative Transport Equation 32 2.4.2 Scattering-Phase Theorem [38] 34 2.4.3 Validation of Scattering-Phase Theorem 35 Chapter 3 Performance of the Three-dimensional Refractive Index Microscope 37 3.1 Introduction 37 3.2 Comparison of Reconstructed RI Distributions by Using Different Algorithms 38 3.3 The Relationship between the Scanning Angles and the Coverage of the Frequency Domain of the Scattering Potential 43 3.4 Comparison of Different Scanning Patterns 45 3.5 RI Distributions of Attached Oral Epithelial Carcinoma Cell, CA9-22 47 Chapter 4 Scattering Properties of Epithelial Cells and Tissue 49 4.1 Experimental Methods 49 4.1.1 Preparation of Live and Fixed Epithelial Cells 49 4.1.2 Histogram Specification Algorithm [103] 50 4.1.3 Preparation of Phase and HE Stained Images of Epithelial Tissue Slices 51 4.2 Results 53 4.2.1 Determination of the RI and Light Scattering Properties of Epithelial Cells 53 4.2.2 Compensation of RI and Volume Shrinkage of Fixed Cells 55 4.2.3 Estimating the Scattering Coefficient and RI of Human Oral Epithelial Tissue 58 4.2.4 Scattering Coefficients of Normal and Precancerous Esophageal Epithelia 61 4.2.5 Scattering Coefficients of Esophageal and Oral Epithelia 68 4.3 Discussion and Conclusion 71 4.3.1 RI and Light Scattering Properties of Epithelial Cells and Oral Epithelium 71 4.3.2 Scattering Coefficients of Normal and Precancerous Esophageal Epithelia 71 Chapter 5 Backscattering Properties of Single Epithelial Cells 73 5.1 Methods 73 5.1.1 Preparation of 3D RI Distributions of Epithelial Cells 73 5.1.2 Simulation of Backscattering of Cells 76 5.2 Results 77 5.2.1 Analysis of Backscattered Light of Cells in Aqueous Media 77 5.2.2 Analysis of Backscattered Light of Cells in Tissue 79 5.3 Discussion and Conclusion 83 Chapter 6 Conclusion and Future Work 86 REFERENCE 88 | |
dc.language.iso | en | |
dc.title | 上皮細胞和組織的三維折射率與光學散射特性 | zh_TW |
dc.title | Three-dimensional Refractive Index Distributions and Light Scattering Properties of Epithelial Cells and Tissue | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 江俊彬,邱政偉,曾雪峰(Snow H. Tseng),林致廷(Chih-Ting Lin),黃念祖(Nien-Tsu Huang) | |
dc.subject.keyword | 折射率,上皮組織,癌症,光學散射特性, | zh_TW |
dc.subject.keyword | Refractive index,Epithelial tissue,Cancer,Light scattering properties, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-11-12 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
Appears in Collections: | 生醫電子與資訊學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf Restricted Access | 7.25 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.