請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55387完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一平 | |
| dc.contributor.author | Xiao Wei | en |
| dc.contributor.author | 魏驍 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:59:47Z | - |
| dc.date.available | 2015-02-03 | |
| dc.date.copyright | 2015-02-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-11-18 | |
| dc.identifier.citation | [1] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg. Wide area localization on mobile phones. International Symposium on Mixed and Augmented Reality, 2009.
[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM (JACM), 45(6):891–923, 1998. [3] K. P. Balanda and H. MacGillivray. Kurtosis: a critical review. The American Statistician, 42(2):111–119, 1988. [4] M. A. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging the crowd for proba- bilistic visual self-localization. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3057–3064. IEEE, 2013. [5] R. Castle, G. Klein, and D. W. Murray. Video-rate localization in multiple maps for wearable augmented reality. In Wearable Computers, 2008. ISWC 2008. 12th IEEE International Symposium on, pages 15–22. IEEE, 2008. [6] O. Chum and J. Matas. Optimal randomized ransac. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(8):1472–1482, 2008. [7] M. Cummins and P. Newman. Fab-map: Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research, 27(6):647– 665, 2008. [8] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from pho- tographs: a hybrid geometry- and image-based approach. ACM SIGGRAPH, 1996. [9] T. Driver. Long-term prediction of gps accuracy: Understanding the fundamentals. ION GNSS International Technical Meeting of the Satellite Division, 2007. [10] E. Eade and T. Drummond. Scalable monocular slam. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 469–476. IEEE, 2006. [11] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communica- tions of the ACM, 24(6):381–395, 1981. [12] Google. Google project tango. https://www.google.com/atap/projecttango/ #project. [13] Y.Gu,A.Lo,andI.Niemegeers.Asurveyofindoorpositioningsystemsforwireless personal networks. IEEE Communications Survey and Tutorials, 11(1):13–32, 2009. [14] R.HartleyandA.Zisserman.Multipleviewgeometryincomputervision.Cambridge university press, 2003. [15] L.Kneip,M.Chli,R.Siegwart,R.Siegwart,andR.Siegwart.Robustreal-timevisual odometry with a single camera and an imu. British Machine Vision Conference, 2011. [16] H. Koyuncu and S. H. Yang. A survey of indoor positioning and object locating sys- tems. International Journal of Computer Science and Network Security, 10(5):121– 128, 2010. [17] H. Lategahn and C. Stiller. Vision-only localization. IEEE Transactions on Intelli- gent Transportation Systems, 15(3):1246–1257, 2014. [18] Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using prioritized feature matching. In Computer Vision–ECCV 2010, pages 791–804. Springer, 2010. [19] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics - Part C, 37(6):1067–1080, 2007. [20] M. Lourakis and A. Argyros. The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm. Technical report, Technical Report 340, Institute of Computer Science-FORTH, Her- aklion, Crete, Greece, 2004. [21] D.G.Lowe.Distinctiveimagefeaturesfromscale-invariantkeypoints.International journal of computer vision, 60(2):91–110, 2004. [22] M. Modsching, R. Kramer, and K. Hagen. Field trial on gps accuracy in a medium size city: The influence of built-up. Workshop on Positioning, Navigation and Com- munication, 2006. [23] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algo- rithm configuration. In VISAPP (1), pages 331–340, 2009. [24] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 1, pages I–652. IEEE, 2004. [25] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007. [26] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using direct 2d- to-3d matching. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 667–674. IEEE, 2011. [27] K. Schmid and H. Hirschmuller. Stereo vision and imu based real-time ego-motion and depth image computation on a handheld device. International Conference on Robotics and Automation, 2013. [28] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3d. ACM transactions on graphics (TOG), 25(3):835–846, 2006. [29] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2):189–210, 2008. [30] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjustment —a modern synthesis. In Vision algorithms: theory and practice, pages 298–372. Springer, 2000. [31] A. Wendel, A. Irschara, and H. Bischof. Natural landmark-based monocular local- ization for mavs. International Conference on Robotics and Automation, 2011. [32] M. Y. Yang and W. Forstner. Plane detection in point cloud data. International Conference on Machine Control Guidance, 2010. [33] A. R. Zamir and M. Shah. Accurate image localization based on google maps street view. In Computer Vision–ECCV 2010, pages 255–268. Springer, 2010. [34] W. Zhang and J. Kosecka. Image based localization in urban environments. In 3D Data Processing, Visualization, and Transmission, Third International Symposium on, pages 33–40. IEEE, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55387 | - |
| dc.description.abstract | 本論文提出了一種基於影像的定位系統架構,在精度和速度上獲得 提高,并壓縮比較資料庫的大小,使其適用于聯網設備在已知場景內 的自我定位。現有的消費型 GPS 設備的精確度都在數公尺級別,在衛 星連接環境不理想的情況下可能誤差更高甚至無法提供定位。而目前 基於影像定位的研究使用的各種方法,均在精度,速度或是比較資料 庫大小上遇到障礙,限制其在一些問題上的應用。我們通過不同場景的 實驗,表明了本文提出的方法可以在保持低於一公尺的誤差的前提下 有效壓縮比較資料庫的大小。在評估效果的同時,本文分析了影響定 位精度的多種因素,亦探討所遇到的問題及其解決方案,以求進一步 的提升和運用。 | zh_TW |
| dc.description.abstract | This thesis proposes an image-based ego-positioning framework to achieve sub-meter accuracy, with compact reference database compared to previous work, which can be used for the positioning of Internet connected devices. Consumer GPS devices nowadays obtain accuracy around several meters, which could be worse or even unable to work depending on the connection with GPS satellites. Current researches on image-based positioning utilize images and the reference database in different ways, however their accuracy, time consumption or database size have set limitations of their application. Experiments on different scenes in this work demonstrate that the method we proposed effectively reduce the size of reference database while main- taining a sub-meter accuracy for positioning. With evaluated performance, influencing factors are investigated, open problems are discussed for further improvements and applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:59:47Z (GMT). No. of bitstreams: 1 ntu-103-R01944042-1.pdf: 26609862 bytes, checksum: b7dfc6ab29946d0fd99d8c2d09c09b80 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 1
誌謝 2 摘要 3 Abstract 4 1 Introduction 1 2 Related Work 4 2.1 2D-to-2Dmatching............................. 4 2.2 2D-to-3DMatching............................. 6 2.3 VisualOdometry .............................. 8 3 Method 11 3.1 3DSceneModeling............................. 11 3.2 ModelCompression............................. 13 3.3 CameraLocalization ............................ 18 4 Experiments 22 5 Conclusion & Future Work 35 Bibliography 37 | |
| dc.language.iso | en | |
| dc.subject | 自我定位;影像定位;模型重建;平面偵測;模型壓縮 | zh_TW |
| dc.subject | model compression | en |
| dc.subject | ego-positioning | en |
| dc.subject | image localization | en |
| dc.subject | model reconstruction | en |
| dc.subject | plane detection | en |
| dc.title | 基於影像的自我定位 | zh_TW |
| dc.title | Image-Based Ego-Positioning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 白法堯,陳祝嵩,陳東杰,丁建均 | |
| dc.subject.keyword | 自我定位;影像定位;模型重建;平面偵測;模型壓縮, | zh_TW |
| dc.subject.keyword | ego-positioning,image localization,model reconstruction,plane detection,model compression, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-11-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 25.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
