Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳鈞(Chun Chen)
dc.contributor.authorYing-Chiao Wangen
dc.contributor.author王嫈喬zh_TW
dc.date.accessioned2021-06-16T03:59:44Z-
dc.date.available2020-02-03
dc.date.copyright2015-02-03
dc.date.issued2014
dc.date.submitted2014-11-19
dc.identifier.citation[1] R. I. Jaffee, “An Overview of Titanium Development and Application, ” Titanium'80, Science and Technology, vol. 1, pp. 53-74, 1980.
[2] 日本鈦協會, 鈦材料及其應用: 冶金工業出版社, 2008.
[3] R. R. Boyer, “An overview on the use of titanium in the aerospace industry, ” Materials Science and Engineering: A, vol. 213, pp. 103-114, 1996.
[4] F.H. Froes, “Titanium Alloys”,Handbook of Advanced Materials:Enabling New Designs, Edited by J.K. Wessel, John Wiley&Sons, Inc.,Hoboken,NJ,pp.272-278, 2004.
[5] W. F. Smith, “Structure and Properties of Engineering Alloys”, McGraw-Hill Inc., pp.433-486, 1993.
[6] C. Leyens, M. Peters, “Titanium and Titanium Alloys, Fundamentals and Applications”, WILEY-VCH GmbH & Co. KGaA, pp. 5-10, 2003.
[7] W.F. Smith, Structure and Properties of Engineering Alloys,2nd ed.,McGraw-Hill Companies, Inc.,New York,NY, pp.437-449, 1993.
[8] F. D. Rosi, C. A. Dube, and B. H. Alevaander, Trans. AIME, vol. 197, pp.257, 1953.
[9] W. F. Smith, “Structure and Properties of Engineering Alloys”, McGraw-Hill Inc., pp.433-486, 1993.
[10] R. Boyer, E. W. Collings, and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, 1994.
[11] N. Clement, A. Lenain, and P. J. Jacques, “Mechanical Property Optimization via Microstructural Control of New Metastable Beta Titanium Alloys”, JOM, vol.59, (no.1), pp.50-53, 2007.
[12] C. Leyens and M. Peters, Titanium and Titanium Alloys: Wiley, 2003.
[13] M. J. Donachie, Titanium and titanium alloys: American Society for Metals, 1982.
[14] R. A. Wood and R. J. Favor, “Titanium Alloys Handbook, Metals and Ceramics Information Center, Batelle Publication No, ” MCIC-HB02, OH, dec 1972.
[15] R. R. Boyer, “An overview on the use of titanium in aerospace industry”, Materials Science and Engineering A213, pp. 103-114, 1996.
[16]M.J. Donachie,JR, “Titanium and Titanium Alloy”, Source Book, pp.10-14,1982.
[17] M. J. Donachie, “Titanium – a Technical Guide”, ASM, USA, p. 4, 38, 39, 1988.
[18] Y. Murakami, “Phase Transformation and Heat Treatment”, Titanium’80 Science and Technology, Kyoto, Japan, p. 154-167, 1980
[19]C.G. Rhodes and N.E. Paton,metallurgical transaction A , formation characteristics of α / β the interface phase in Ti-6Al-4V,vol 10A,1979
[20] C. G. Rhodes and J. C. Williams: Met. Trans. A,vol. 6A, pp. 670-71, 1975.
[21] C. G. Rhodes and N. E. Paton: Proceedingsof 3rd lnternational Conference on Ti, Moscow, in press, 1976.
[22] A.M. Al-Mayouf, A. A. Al-Swayih, N. A. Al-Mobarak and A. S. Al-Jabab, Saudi Dental Journal, pp.118,2002.
[23] S. Luiz de Assis, S. Wolynec, I. Costa, Electrochim. Acta 51,vol.1815-1819, 2006.
[24] W. D. Callister, Materials Science and Engineering – An introduction,3rd ed., John Wiley and Sons, New York, USA,1994.
[25] A. Ito, Y. Okazaki.,T. Tateishi, J. of Biomed. Mater. Res., 1993.
[26] J. Le Brime, Sci. Rev. de Metall., 1989.
[27] M. F. Senlitschi, H.Weber, R. M. Streicher, R. Schon, Biomaterials,,1992.
[28] Thair, Mudali, Asokamani and Raj, “Influence of microstructural changes on corrosion behaviour of thermally aged Ti-6Al-7Nb alloy”, Materials and Corrosion,vol.55,(no.5),2004.
[29] H. Zitter, H. Plank, J. Biomed. Mater. Res., 1987.
[30] H. H. Uhlig, R.Winston Revie, (eds) Corrosion and Corrosion Control, John Wiley & Sons, New York, USA, pp. 375, 1985.
[31] G. S. Levanthal, J. Bone, Jt. Surgery Am. vol.473,(no.33),1951.
[32] G. H. Hill. J. Mater. vol.373,(no.1), 1996.
[33] F. Grindschchober, G. Kellner, J. Ecgberger, H. Penk. Jr., in: Biomaterials, G. D. Winter, D. F. Gibbon, H. Jr. Plank, (eds), JohnWiley and Sons, New York, USA,, pp. 365 –370, 1982.
[34] Danny A.Jones, “Principle and Prevention of Corrosion”, 2nd edition,1996.
[35] 柯賢文,腐蝕及其防制,全華出版社,民國八十四年。
[36] N.G. Fontana and N.D. Greene,“Corrosion Engineering”, 3rd edition, McGraw-Hill ,1986.
[37] K.R. Trethewey and J. Vhamberlain,“Corrosion for Science
and Engineering”, :Longman ,1995.
[38] W.F. Smith,“Material Science and Engineering”, McGraw- Hill, Inc. pp.661,1994.
[39] 莊東漢,材料破損分析,五南圖書出版股份有限公司,民國96年。
[40] 張鼎張、胡榮治、陳力俊,奈米通訊,第六卷第四期。
[41] W. Stephen Tait, “An Interoduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists”, 1994.
[42] L.H. Hihara and R. M. Latanision, “Corrosion of metal matrix
composites”, International Materials Reviews, vol.39, (no.6),pp.245-264, 1994.
[43] 鮮祺振,“金屬腐蝕膜特性探討”,徐氏基金出版p.115,1998 .
[44]R.W.Schutz, D.E. Thomas, Corrosion of Titanium and Titanium Alloys, ASM Metals Handbook, vol669,(no.13),1987.
[45] R.E. Curtis, R.R. Boyer, J.C. Williams, “Relationship Between Composition Microstructure and Stress Corrosion Cracking(in Salt Solution) in Titanium Alloys”, Trans of ASM,vol.62, pp.457, 1969.
[46] R.W.Schutz, “An Overview of Beta Titanium Alloys Environmental Behavior”, The Mineral, Metal& Material Society, Warrendale, PA,pp. 75-91,1993.
[47] N. Cassillas, S. J. Charelbois, W. H. Smyrl, H. White, “Scanning Electrochemical Microscopy of Precursor Sites for Pitting Corrosion on Titanium”, Journal of the Electrochemical Society, vol. 140, pp. L142-L145, 1993.
[48] N. Cassillas, S. J. Charelbois, W. H. Smyrl, H. White, “Pitting Corrosion of Titanium”, Journal of the Electrochemical Society, vol. 141, pp. 636-642, 1994.
[48] T. R. Beck, “Electrochemistry of Freshly-Generated Titanium Surfaces-II. Rapid Fracture Experiments”, Electrochimica Acta, vol. 18, pp. 815-827, 1973.
[50] D. G. Kolman, J. R. Scully, “On the Repassivation Behavior of High-Purity Titanium and Selected α, β, and β + α Titanium Alloys in Aqueous Chloride Solutions”, Journal of the Electrochemical Society, vol. 143, pp. 1847-1860, 1996.
[51] T. Shibata, Y. Zhu, “The Effect of Temperature on the Growth of Anodic Oxide Film on Titanium”, Corrosion Science, vol. 37, No. 1, pp. 133-144, 1995.
[52] D. Tomashov, G. P. Shernova, Y. S. Ruscol, G. A. Ayuyan, “The Passivation of Alloys on Titanium Bases”, Electrochimica Acta, vol. 19, pp. 159-172, 1974.
[53] T. Ohtsuka, M. Masuda, N. Sato, “Ellipsometric Study of Anodic Oxide Films on Titanium in Hydrochloric Acid, Sulfuric Acid, and Phosphate Solution”, Journal of the Electrochemical Society, vol. 132. pp. 787-792, 1985.
[54] C. Cittig, G. Hanher, A. Marti, M. Textor, N. D. Spencer, J. Mater. Sci., Mater. in Med. ,vol. 10,(no.191),1999.
[55] V. S. Raja, R. D. Angal, M. Suresh, Corrosion, vol. 42,(no.2),1993.
[56] W.S. Tait, “An introduction to electrochemical corrosion testing for practicing engineers and scientists”, Chapter 6, Racine, Wisconsin, 1994.
[57] Dean, S. W.,Jr., W.D. France, Jr., and S.J. Ketcham,
“Electrochemical Method”, Handbook on Corrosion Testing and Evaluation, W.H. Ailor, Ed., John Wiley, New York pp.173,1971.
[58] J. G. Kaufman, G. T. Sha, R. F. Kohm, and Bucci: “Notch-yield ratio as a quality
control index for plane-strain fracture toughness”, Cracks and Fracture, ASTM
STP 601, ASTM, pp.169-190, 1976.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55386-
dc.description.abstract本研究係針對Ti-6Al-7Nb鈦合金,探討試片經過不同溫度固溶與冷卻速率後之顯微組織變化,並選擇部分試片於乳酸林格氏與0.9 wt. % NaCl溶液進行極化試驗。由於鈦合金試片表面之緻密氧化層,測試結果皆有大範圍鈍態區,故試片之腐蝕性評估係以鈍態電流密度做為指標,此值越低抗蝕性越佳。此外,本實驗亦針對腐蝕性質較佳之熱處理試片進行拉伸與缺口拉伸測試,而後評估不同顯微組織對腐蝕與機械性質之影響。
Ti-6Al-7Nb為α + β雙相鈦合金,其在1600 ˚F至1800 ˚F間熱處理時,β 相含量隨著溫度上升而遞增,水淬後完全變態為 α' 麻田散體,空冷後轉變為細小魏德曼組織,爐冷試片之 β 相則主要集中於晶界。若固溶溫度超過 Tβ 溫度( 1864 ˚F ),水淬、空冷與爐冷後之試片顯微組織則分別為α' 相、細小與粗大魏德曼組織。在 Tβ 溫度附近固溶之爐冷試片,可觀察到α 與 β 兩相間,因體積限制與成分梯度而形成之FCC雙晶結構過渡相。此界面相與 α 、 β相之方位關係與Ti-6Al-4V類似,即有 [-111]β
zh_TW
dc.description.abstract[110] FCCzh_TW
dc.description.abstract[11-20]α與 (01-1)βzh_TW
dc.description.abstract(11-1)FCCzh_TW
dc.description.abstract(0002) α的方位關係。
極化試驗結果顯示:0.9 wt. % NaCl溶液含有較高濃度之 [ Cl- ],易破壞表面之氧化層,故較乳酸林格氏溶液有更高的鈍態電流密度。水淬試片之α' 相增加會使腐蝕性質變差;成分組成差異較大之爐冷α / β界面依固溶溫度上升而遞增,使其抗蝕性下降;空冷試片較無優選腐蝕情形,抗蝕性隨 α 相減少而有略微增加的趨勢。總體而言,水淬者之抗蝕性最差,爐冷次之,空冷者最佳。拉伸試驗結果指出,試片於雙相區固溶後空冷,其抗拉強度與延性隨著固溶處理溫度上升而遞減。低溫固溶之1600 A試片晶粒細微,故有較佳之機械性質;超過 Tβ 溫度固溶之試片,晶粒粗大而使延性下降。
zh_TW
dc.description.abstractThis study investigated the effect of microstructure on the corrosion and mechanical properties of Ti-6Al-7Nb alloy. The microstructural evolution of Ti-6Al-7Nb was examined in various combinations of heat treating temperature and cooling rate. To evaluate corrosion behavior of the alloy, polarization tests in lactated Ringer’s and 0.9 wt. % NaCl solutions were conducted on selected specimens. The polarization curves exhibited a wide range of passive regions since the presence of oxides on the surfaces of these specimens. For this reason, passive current density was chosen as the most informative index to estimate the corrosion properties of Ti-6Al-7Nb. Lower passive current density indicates better corrosion properties. Some specimens with good corrosion resistance were also chosen to perform tensile and notch tensile tests. The effect of microstructure on corrosion and mechanical properties of the alloy was then assessed.
Ti-6Al-7Nb belongs to (α + β) type titanium alloy. When the solution temperature was in the range of 1600 to 1800˚F, the amount of β increased with the increasing temperature. The β phase was transformed completely into α′ (HCP martensite) after water quenching, and into a fine Widmanstatten structure after air cooling. For those furnace-cooled specimens which had more time for partitioning of alloying elements, the β phase was mainly located on the grain boundaries. If the samples were solutionized at a temperature higher than the β-transus temperature (1864˚F), the β phase was transformed into α′, fine Widmanstatten and coarse Widmanstatten after water quenching, air and furnace cooling, respectively. The interface phase (fcc), which contains internal twins, was also observed between the α and β phases in the specimen after furnace cooling from near β-transus temperature. The orientation relationships among the α, interface and β phases can be written as β
en
dc.description.abstractFCCen
dc.description.abstractα and βen
dc.description.abstractα , similar to those observed in Ti-6Al-4V.
Polarization test results indicated that 0.9 wt. % NaCl solution tended to destroy the oxide layer due to the existence of higher concentration of chloride ions. As a result, such specimens tested in 0.9 wt. % NaCl solution had a higher value of passive current density than in Ringer’s solution. The corrosion resistance of water-quenched specimens deteriorated as the amount of the α' phase increased. Significant differences in the composition between the α and β phases were accounted for the deteriorated corrosion resistance of the furnace-cooled specimens. On the other hand, the air-cooled specimens did not show dissolution of specific phases in both solutions and exhibited low passive current densities. In general, the corrosion resistance of variously cooled specimens after heat treatment in the range of 1600 to 1800˚F could be sorted in descending order as follows: air-cooled, furnace-cooled, and water-quenched specimens. Tensile test results also demonstrated that tensile strength and ductility dropped as the heat-treatment temperature increased in the two-phase region, followed by cooling in air. The 1600A specimen, which was heat-treated at 1600˚F and then cooled in air, had better mechanical properties than others, possibly due to relatively smaller grains. In the case of the specimens heat treated at a temperature higher than the β-transus temperature, significant grain growth resulted in large grains that caused poor ductility of the material.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:59:44Z (GMT). No. of bitstreams: 1
ntu-103-R01527020-1.pdf: 29685378 bytes, checksum: 942914f23b2990225bb0596be8cb6e74 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目 錄
第 1 章 前言 1
第 2 章 文獻回顧 2
2-1鈦合金之簡介及發展 2
2-1-1鈦及其合金之發展與應用 2
2-1-2鈦合金之基本性質 4
2-1-3溶質元素對鈦合金之影響 4
2-1-4 鈦合金之分類 9
2-1-5 Ti-6Al-4V熱處理條件與顯微組織關係 12
2-1-6 Ti-6Al-7Nb鈦合金之簡介與其性質 16
2-2腐蝕理論 17
2-2-1極化現象 20
2-2-2混合電位理論與動電位極化曲線 23
2-2-3腐蝕破壞型式 25
2-2-4 Ti-6Al-7Nb鈦合金之腐蝕特性 26
2-2-5腐蝕測試 27
第 3 章 實驗方法與設備 30
3-1 實驗材料與流程 30
3-2 固溶處理與時效處理 30
3-3 顯微組織觀察 34
3-3-1金相觀察 34
3-3-2 SEM顯微結構觀察 34
3-3-3 TEM顯微結構觀察 34
3-3-4 EPMA成分分析 34
3-4 腐蝕性質測試 35
3-4-1開路電位量測 35
3-4-2 動電位極化掃描測試 35
3-5 機械性質量測 38
3-5-1維氏硬度量測 38
3-5-2 拉伸試驗 38
第 4 章 結果與討論 44
4-1母材顯微組織與基本分析 44
4-2不同固溶處理條件之顯微組織 44
4-2-1固溶處理溫度低於1600 ˚F 44
4-2-2固溶處理溫度介於1600 ˚F至1830 ˚F之間 51
4-2-3固溶處理溫度高於β相轉換溫度( Tβ ) 61
4-3接近β相轉換溫度( Tβ )之成分分析 70
4-4腐蝕性質量測 78
4-4-1開路電位量測 78
4-4-2動態電極極化試驗 84
4-5機械性質測試 104
4-5-1一般拉伸測試 110
4-5-2缺口拉伸測試 114
4-5-3 破斷面觀察 114
第 5 章 結論 133
第 6 章 參考文獻 134
dc.language.isozh-TW
dc.titleTi-6Al-7Nb顯微組織對腐蝕與機械性質之影響研究zh_TW
dc.titleEffect of Microstructure on Corrosion and Mechanical properties of Ti-6Al-7Nb Alloyen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡履文(Lu-Wen Tsai),林招松(Chao-Sung Lin)
dc.subject.keywordTi-6Al-7Nb,鈦合金,顯微組織,動電位極化曲線,拉伸性質,zh_TW
dc.subject.keywordTi-6Al-7Nb titanium alloy,heat treatment,microstructure,dynamic polarization test,tensile properties,en
dc.relation.page137
dc.rights.note有償授權
dc.date.accepted2014-11-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
28.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved