Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chin-Chung Yang)
dc.contributor.authorChen-Yao Hsuehen
dc.contributor.author薛鎮耀zh_TW
dc.date.accessioned2021-06-16T03:59:01Z-
dc.date.available2020-08-03
dc.date.copyright2020-08-03
dc.date.issued2020
dc.date.submitted2020-07-30
dc.identifier.citation[1]J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131-1144 (2000).
[2]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601-605 (2004).
[3]M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253-1257 (2008).
[4]Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[5]N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep. 2, 816 (2012).
[6]C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102(21), 211110 (2013).
[7]G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[8]D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[9]Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(S4), A914-A929 (2011).
[10]C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105(10), 101106 (2014).
[11]C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23(6), 8150-8161 (2015).
[12]C. H. Lin, C. G. Tu, Y. F. Yao, S. H. Chen, C. Y. Su, H. T. Chen, Y. W. Kiang, and C. C. Yang, “High modulation bandwidth of a light-emitting diode with surface plasmon coupling,” IEEE Trans. Electron Dev. 63(10), 3989-3995 (2016).
[13]C. Y. Su, C. H. Lin, Y. F. Yao, W. H. Liu, M. Y. Su, H. C. Chiang, M. C. Tsai, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode,” Opt. Express 25(18), 21526-21536 (2017).
[14]C. H. Lin, C. Y. Su, Y. F. Yao, M. Y. Su, H. C. Chiang, M. C. Tsai, W. H. Liu, C. G. Tu, Y. W. Kiang, C. C. Yang, F. W. Huang, C. L. Lee, and T. C. Hsu, “Further emission efficiency improvement of a commercial-quality light-emitting diode through surface plasmon coupling,” Opt. Lett. 43(22), 5631-5634 (2018).
[15]S. C. Zhu, Z. G. Yu, L. X. Zhao, J. X. Wang, and J. M. Li, “Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons,” Opt. Express 23(11), 13752-13760 (2015).
[16]S. Zhu, Z. Yu, L. Liu, C. Yang, H. Cao, X. Xi, J. Li, and L. Zhao, “Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes,” Opt. Express 25(9), 9617-9627 (2017).
[17]S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, “Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs,” Appl. Phys. Lett. 111(17), 171105 (2017).
[18]H. Cao , S. Lin , Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6 MHz modulation bandwidth,” IEEE Electron Dev. Lett. 40(2), 267-270 (2019).
[19]S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[20]H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9(3), 205-213 (2010).
[21]S. Nootchanat, A. Pangdam, R. Ishikawa, K. Wongravee, K. Shinbo, K. Kato, F. Kaneto, S. Ekgasit, and A. Baba, “Grating-coupled surface plasmon resonance enhanced organic photovoltaic devices induced by blu-ray disc recordable and blu-ray disc grating structures,” Nanoscale 9(15), 4963-4971 (2017).
[22]F. J. Tsai, J. Y. Wang, J. J. Huang, Y. W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2), A207-A220 (2010).
[23]H. Y. Lin, Y. Kuo, C. Y. Liao, C. C. Yang, and Y. W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Opt. Express 20(S1), A104-A118 (2012).
[24]C. Y. Liu, T. P. Chen, T. S. Kao, J. K. Huang, H. C. Kuo, Y. F. Chen, and C. Y. Chang, “Color-conversion efficiency enhancement of quantum dots via selective area nano-rods light-emitting diodes,” Opt. Express 24(17), 19978-19987 (2016).
[25]J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22(S2), A511-A520 (2014).
[26]H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23(25), 32504-32515 (2015).
[27]C. Y. Chen, J. Y. Wang, F. J. Tsai, Y. C. Lu, Y. W. Kiang, and C. C. Yang, “Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors,” Opt. Express 17(16), 14186-14198 (2009).
[28]L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4(5), 2955-2963 (2010).
[29]E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nature Mater. 11(3), 241-249 (2012).
[30]D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J. P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[31]H. Lu, D. Zhang, X. Ren, J. Liu, and W. C. H. Choy, “Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode,” ACS Nano 8(10), 10980-10987 (2014).
[32]C. Bao, J. Yang, H. Gao, F. Li, Y. Yao, B. Yang, G. Fu, X. Zhou, T. Yu, Y. Qin, J. Liu, and Z. Zou, “In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared,” ACS Nano 9(3), 2502-2509 (2015).
[33]Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu, S. Huang, C. F. Guo, and Z. Ren, “Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes,” Nano Lett. 17(2), 1090-1096 (2017).
[34]H. Hu, M. Pauly, O. Felix, and G. Decher, “Spray-assisted alignment of layer-by-layer assembled silver nanowires: a general approach for the preparation of highly anisotropic nano-composite films,” Nanoscale 9(3), 1307-1314 (2017).
[35]W. Jo, H. S. Kang, J. Choi, H. Lee, and H. T. Kim, “Plasticized polymer interlayer for low-temperature fabrication of a high-quality silver nanowire-based flexible transparent and conductive film,” ACS Appl. Mater. Interfaces 9, 15114-15121 (2017).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55372-
dc.description.abstract在本論文研究中,我們先將銀納米線覆蓋在氮化鎵基板上,隨後製作銀納米顆粒,並與未覆蓋銀奈米線直接製作銀奈米顆粒的樣品進行比較,發現前者的侷域表面電漿子共振波長明顯較短。後者共振波長通常長於500奈米,而前者則落在可以與藍光量子井耦合的範圍內(約450奈米)。我們推測這種行為是由於聚乙烯吡咯烷酮沉積在基板表面所引起的,聚乙烯吡咯烷酮是用於合成銀奈米線的表面活性劑,留存在銀奈米線的表面上。聚乙烯吡咯烷酮可溶解在銀奈米線溶液中,並與銀奈米線一起鋪在氮化鎵表面。聚乙烯吡咯烷酮在銀奈米顆粒與氮化鎵之間形成一個薄間隙,導致銀奈米顆粒的侷域表面電漿子共振波長藍移。量子井的內部量子效率和光致發光衰減時間的測量顯示,這種藍移行為可以提高量子井在450奈米處與表面銀奈米顆粒的表面電漿子耦合效果,從而提高量子井的發光效率。這種現象可以應用於使用銀納米線作為透明導電體之藍光二極體。zh_TW
dc.description.abstractWith Ag nanowires (NWs) overlaid onto a GaN template, the localized surface plasmon (LSP) resonance wavelength of subsequently deposited Ag nanoparticles (NPs) becomes significantly shorter, when compared with that in the case without Ag NW overlay. The latter is generally longer than 500 nm while the former falls into the blue range, around 450 nm. It is speculated that this behavior is caused by the settlement of polyvinylpyrrolidone (PVP), which is the surfactant used for synthesizing Ag NW and remains on the surface of an Ag NW. PVP is dissolved in the Ag NW solution and is applied to GaN surface together with Ag NWs. The PVP layer forms a narrow gap between Ag NPs and GaN and leads to the blue shift of the LSP resonance of Ag NPs. Measurements of internal quantum efficiency and photoluminescence decay time in a quantum-well (QW) structure show that this blue-shift behavior can further enhance the emission efficiency of a QW at 450 nm. This phenomenon is applied to the fabrication of a blue light-emitting diode using Ag NWs as transparent conductor.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:59:01Z (GMT). No. of bitstreams: 1
U0001-3007202011543400.pdf: 6131740 bytes, checksum: 2b387cea1a3fab91831db21149d94723 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Contents v
List of Figure vii
List of Table x
Chapter 1 Introduction 1
1.1 Surface plasmon coupling with light emitters 1
1.2 Localized surface plasmon resonance wavelength of a surface metal nanoparticle 2
1.3 Silver nanowires 4
1.4 Research motivations 4
1.5 Thesis structure 5
Chapter 2 Localized Surface Plasmon Resonance of Surface Ag Nanoparticles with Ag Nanowires 8
2.1 Fabrication of Ag nanowires 8
2.2 Localized surface plasmon resonance of Ag nanoparticles with Ag nanowires of different concentrations 8
2.3 Localized surface plasmon resonance of Ag nanoparticles thermally annealed at different temperatures 11
Chapter 3 Surface Plasmon Coupling of Surface Ag Nanoparticles with a Quantum-well Structure Overlaid with Ag Nanowires 31
3.1 Results of the first quantum-well sample set 31
3.2 Results of the second quantum-well sample set 32
Chapter 4 Mechanisms and Simulation Study 51
4.1 Mechanism for resonance blue shift and simulation geometry 51
4.2 Simulation results 52
Chapter 5 Surface Plasmon Coupling Behaviors of Surface Ag Nanoparticles in a Light-emitting Diode Using Ag Nanowires as a Transparent Conductor 59
5.1 Samples structure 59
5.2 Device performances 60
Chapter 6 Conclusions 74
References 75
dc.language.isoen
dc.subject侷域表面電漿子共振zh_TW
dc.subject銀納米顆粒zh_TW
dc.subject銀納米線zh_TW
dc.subject聚乙烯吡咯烷酮zh_TW
dc.subject透明導電體zh_TW
dc.subject藍光二極體zh_TW
dc.subjectAg nanoparticlesen
dc.subjectblue light-emitting diodeen
dc.subjecttransparent conductoren
dc.subjectpolyvinylpyrrolidone (PVP)en
dc.subjectlocalized surface plasmon (LSP) resonanceen
dc.subjectAg nanowiresen
dc.title使用銀奈米線為透明導電體之發光二極體內表面銀奈米顆粒的表面電漿子耦合行為zh_TW
dc.titleSurface Plasmon Coupling Behaviors of Surface Silver Nanoparticles in a Light-emitting Diode Using Silver Nanowires as Transparent Conductoren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),陳奕君(I-Chun Cheng),江衍偉(Yean-Woei Kiang),郭仰(Yang Kuo)
dc.subject.keyword銀納米線,銀納米顆粒,侷域表面電漿子共振,聚乙烯吡咯烷酮,透明導電體,藍光二極體,zh_TW
dc.subject.keywordAg nanowires,Ag nanoparticles,localized surface plasmon (LSP) resonance,polyvinylpyrrolidone (PVP),transparent conductor,blue light-emitting diode,en
dc.relation.page79
dc.identifier.doi10.6342/NTU202002090
dc.rights.note有償授權
dc.date.accepted2020-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-3007202011543400.pdf
  未授權公開取用
5.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved