請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃人則(Joseph Jen Tse Huang) | |
| dc.contributor.author | Jiří Koubek | en |
| dc.contributor.author | 谷喬治 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:57:32Z | - |
| dc.date.available | 2016-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-12-03 | |
| dc.identifier.citation | Agashe VR, Guha S, Chang HC, Genevaux P, Hayer-Hartl M, Stemp M, Georgopoulos C, Hartl FU, Barral JM. 2004. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117: 199-209.
Anderson AC, Scaringe SA, Earp BE, Frederick CA. 1996. HPLC purification of RNA for crystallography and NMR. RNA 2: 110-117. Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181: 223-230. Bain JD, Switzer C, Chamberlin AR, Benner SA. 1992. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356: 537-539. Batey RT, Kieft JS. 2007. Improved native affinity purification of RNA. RNA 13: 1384-1389. Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S. 2009. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc Natl Acad Sci U S A 106: 1398-1403. Bonnet J, Ebel JP. 1972. Interpretation of incomplete reactions in tRNA aminoacylation. Aminoacylation of yeast tRNA Val II with yeast valyl-tRNA synthetase. Eur J Biochem 31: 335-344. Borel F, Härtlein M, Leberman R. 1993. In vivo overexpression and purification of Escherichia coli tRNA(ser). FEBS Lett 324: 162-166. Bowers PM, Schaufler LE, Klevit RE. 1999. A folding transition and novel zinc finger accessory domain in the transcription factor ADR1. Nat Struct Biol 6: 478-485. Cabrita LD, Hsu ST, Launay H, Dobson CM, Christodoulou J. 2009. Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proc Natl Acad Sci U S A 106: 22239-22244. Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P, Agostini F, Tartaglia GG, Hayer-Hartl M, Hartl FU. 2012. DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1: 251-264. Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG. 2002. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124: 9026-9027. Christian T, Lipman R, Evilia C, Hou Y. 2000. Alternative design of a tRNA core for aminoacylation. J Mol Biol 303: 503-514. Conti BJ, Elferich J, Yang Z, Shinde U, Skach WR. 2014. Cotranslational folding inhibits translocation from within the ribosome-Sec61 translocon complex. Nat Struct Mol Biol 21: 228-235. De Keyzer J, Van Der Does C, Driessen AJ. 2002. Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles. J Biol Chem 277: 46059-46065. Di Tomasso G, Lampron P, Dagenais P, Omichinski JG, Legault P. 2011. The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions. Nucleic Acids Res 39: 10. Easton LE, Shibata Y, Lukavsky PJ. 2010. Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 16: 647-653. Ellis JP, Bakke CK, Kirchdoerfer RN, Jungbauer LM, Cavagnero S. 2008. Chain dynamics of nascent polypeptides emerging from the ribosome. ACS Chem Biol 3: 555-566. Ellis JP, Culviner PH, Cavagnero S. 2009. Confined dynamics of a ribosome-bound nascent globin: Cone angle analysis of fluorescence depolarization decays in the presence of two local motions. Protein Sci 18: 2003-2015. Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431: 590-596. Ferré-D'Amaré AR, Doudna JA. 1996. Use of cis- and trans-ribozymes to remove 5' and 3' heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24: 977-978. Flanagan JJ, Chen JC, Miao Y, Shao Y, Lin J, Bock PE, Johnson AE. 2003. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J Biol Chem 278: 18628-18637. Francklyn CS, First EA, Perona JJ, Hou YM. 2008. Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods 44: 100-118. Gershenson A, Gierasch LM. 2011. Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 21: 32-41. Gite S, Mamaev S, Olejnik J, Rothschild K. 2000. Ultrasensitive fluorescence-based detection of nascent proteins in gels. Anal Biochem 279: 218-225. Gubbens J, Kim SJ, Yang Z, Johnson AE, Skach WR. 2010. In vitro incorporation of nonnatural amino acids into protein using tRNA(Cys)-derived opal, ochre, and amber suppressor tRNAs. RNA 16: 1660-1672. Hauenstein S, Zhang CM, Hou YM, Perona JJ. 2004. Shape-selective RNA recognition by cysteinyl-tRNA synthetase. Nat Struct Mol Biol 11: 1134-1141. Hoffmann A, Merz F, Rutkowska A, Zachmann-Brand B, Deuerling E, Bukau B. 2006. Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J Biol Chem 281: 6539-6545. Hou YM, Motegi H, Lipman R, Hamann C, Shiba K. 1999. Conservation of a tRNA core for aminoacylation. Nucleic Acids Res 27: 4743-4750. Hou YM, Schimmel P. 1988. A simple structural feature is a major determinant of the identity of a transfer-RNA. Nature 333: 140-145. Hou YM, Westhof E, Giegé R. 1993. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci U S A 90: 6776-6780. Hsu ST, Cabrita LD, Fucini P, Christodoulou J, Dobson CM. 2009. Probing side-chain dynamics of a ribosome-bound nascent chain using methyl NMR spectroscopy. J Am Chem Soc 131: 8366-8367. Hsu ST, Fucini P, Cabrita LD, Launay H, Dobson CM, Christodoulou J. 2007. Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc Natl Acad Sci U S A 104: 16516-16521. Ikemura T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151: 389-409. Jahn MJ, Jahn D, Kumar AM, Söll D. 1991. Mono Q chromatography permits recycling of DNA template and purification of RNA transcripts after T7 RNA polymerase reaction. Nucleic Acids Res 19: 2786. Kao C, Zheng M, Rüdisser S. 1999. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5: 1268-1272. Keel AY, Easton LE, Lukavsky PJ, Kieft JS. 2009. Large-scale native preparation of in vitro transcribed RNA. Methods Enzymol 469: 3-25. Kieft JS, Batey RT. 2004. A general method for rapid and nondenaturing purification of RNAs. RNA 10: 988-995. Kim I, McKenna SA, Viani Puglisi E, Puglisi JD. 2007. Rapid purification of RNAs using fast performance liquid chromatography (FPLC). RNA 13: 289-294. Kim TW, Keum JW, Oh IS, Choi CY, Park CG, Kim DM. 2006. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126: 554-561. Kinosita K, Kawato S, Ikegami A. 1977. A theory of fluorescence polarization decay in membranes. Biophys J 20: 289-305. Kirchdoerfer RN, Huang JJ, Isola MK, Cavagnero S. 2007. Fluorescence-based analysis of aminoacyl- and peptidyl-tRNA by low-pH sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 364: 92-94. Kirsebom LA. 2007. RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89: 1183-1194. Knight AM, Culviner PH, Kurt-Yilmaz N, Zou T, Ozkan SB, Cavagnero S. 2013. Electrostatic Effect of the Ribosomal Surface on Nascent Polypeptide Dynamics. ACS Chem Biol. 8: 1195–1204. Komatsoulis GA, Abelson J. 1993. Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase. Biochemistry 32: 7435-7444. Korostelev AA. 2011. Structural aspects of translation termination on the ribosome. RNA 17: 1409-1421. Lakshmipathy SK, Gupta R, Pinkert S, Etchells SA, Hartl FU. 2010. Versatility of trigger factor interactions with ribosome-nascent chain complexes. J Biol Chem 285: 27911-27923. Lamprou P, Kempe D, Katranidis A, Büldt G, Fitter J. 2014. Nanosecond dynamics of calmodulin and ribosome-bound nascent chains studied by time-resolved fluorescence anisotropy. ChemBioChem 15: 977-985. Lin K, Sun C, Huang Y, Chan S, Koubek J, Wu T, Huang J. 2012. Cotranslational Protein Folding within the Ribosome Tunnel Influences Trigger-Factor Recruitment. Biophys J 102: 2818-2827. Lin-Chao S, Chen WT, Wong TT. 1992. High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6: 3385-3393. Lindberg MO, Oliveberg M. 2007. Malleability of protein folding pathways: a simple reason for complex behaviour. Curr Opin Struct Biol 17: 21-29. Lipari G, Szabo A. 1980. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J 30: 489-506. Lukavsky PJ, Puglisi JD. 2004. Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides. RNA 10: 889-893. Maier R, Eckert B, Scholz C, Lilie H, Schmid FX. 2003. Interaction of trigger factor with the ribosome. J Mol Biol 326: 585-592. Mamaev S, Olejnik J, Olejnik EK, Rothschild KJ. 2004. Cell-free N-terminal protein labeling using initiator suppressor tRNA. Anal Biochem 326: 25-32. McKenna SA, Kim I, Puglisi EV, Lindhout DA, Aitken CE, Marshall RA, Puglisi JD. 2007. Purification and characterization of transcribed RNAs using gel filtration chromatography. Nat Protoc 2: 3270-3277. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC. 1987. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15: 8783-8798. Miyauchi K, Ohara T, Suzuki T. 2007. Automated parallel isolation of multiple species of non-coding RNAs by the reciprocal circulating chromatography method. Nucleic Acids Res 35: e24. Moncoq K, Broutin I, Craescu CT, Vachette P, Ducruix A, Durand D. 2004. SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer? Biophys J 87: 4056-4064. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW. 2010. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464: 441-444. O'Brien EP, Christodoulou J, Vendruscolo M, Dobson CM. 2012. Trigger factor slows co-translational folding through kinetic trapping while sterically protecting the nascent chain from aberrant cytosolic interactions. J Am Chem Soc 134: 10920-10932. Oh E, Becker AH, Sandikci A, Huber D, Chaba R, Gloge F, Nichols RJ, Typas A, Gross CA, Kramer G et al. 2011. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147: 1295-1308. Ohtsuki T, Yamamoto H, Doi Y, Sisido M. 2010. Use of EF-Tu mutants for determining and improving aminoacylation efficiency and for purifying aminoacyl tRNAs with non-natural amino acids. J Biochem 148: 239-246. Ohuchi M, Murakami H, Suga H. 2007. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr Opin Chem Biol 11: 537-542. Onuchic JN, Wolynes PG. 2004. Theory of protein folding. Curr Opin Struct Biol 14: 70-75. Park HS, Hohn MJ, Umehara T, Guo LT, Osborne EM, Benner J, Noren CJ, Rinehart J, Söll D. 2011. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333: 1151-1154. Patzelt H, Rüdiger S, Brehmer D, Kramer G, Vorderwülbecke S, Schaffitzel E, Waitz A, Hesterkamp T, Dong L, Schneider-Mergener J et al. 2001. Binding specificity of Escherichia coli trigger factor. Proc Natl Acad Sci U S A 98: 14244-14249. Perona JJ, Swanson R, Steitz TA, Söll D. 1988. Overproduction and purification of Escherichia coli tRNA(2Gln) and its use in crystallization of the glutaminyl-tRNA synthetase-tRNA(Gln) complex. J Mol Biol 202: 121-126. Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612. Pikovskaya O, Serganov AA, Polonskaia A, Serganov A, Patel DJ. 2009. Preparation and crystallization of riboswitch-ligand complexes. Methods Mol Biol 540: 115-128. Pleiss JA, Derrick ML, Uhlenbeck OC. 1998. T7 RNA polymerase produces 5' end heterogeneity during in vitro transcription from certain templates. RNA 4: 1313-1317. Ponchon L, Dardel F. 2011. Large scale expression and purification of recombinant RNA in Escherichia coli. Methods 54: 267-273. Price SR, Ito N, Oubridge C, Avis JM, Nagai K. 1995. Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249: 398-408. Párraga G, Horvath SJ, Eisen A, Taylor WE, Hood L, Young ET, Klevit RE. 1988. Zinc-dependent structure of a single-finger domain of yeast ADR1. Science 241: 1489-1492. Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. 2014. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344: 1250494. Schenborn ET, Mierendorf RC. 1985. A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13: 6223-6236. Sherlin LD, Bullock TL, Nissan TA, Perona JJ, Lariviere FJ, Uhlenbeck OC, Scaringe SA. 2001. Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization. RNA 7: 1671-1678. Szabo A. 1984. Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys 81: 150-167. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599. Uhlenbeck O. 1995. Keeping RNA happy. RNA 1: 4-6. Van Durme J, Maurer-Stroh S, Gallardo R, Wilkinson H, Rousseau F, Schymkowitz J. 2009. Accurate prediction of DnaK-peptide binding via homology modelling and experimental data. PLoS Comput Biol 5: e1000475. Varshney U, Lee CP, RajBhandary UL. 1991. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem 266: 24712-24718. von Ehrenstein G. 1967. Isolation of sRNA from intact Escherichia coli cells. Methods Enzymol 12: 9. Wang J, Xie J, Schultz PG. 2006. A genetically encoded fluorescent amino acid. J Am Chem Soc 128: 8738-8739. Weinreis SA, Ellis JP, Cavagnero S. 2010. Dynamic fluorescence depolarization: a powerful tool to explore protein folding on the ribosome. Methods 52: 57-73. Wyatt JR, Chastain M, Puglisi JD. 1991. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques 11: 764-769. Wymer N, Buchanan LV, Henderson D, Mehta N, Botting CH, Pocivavsek L, Fierke CA, Toone EJ, Naismith JH. 2001. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure 9: 1-9. Young TS, Schultz PG. 2010. Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem 285: 11039-11044. Ziehr DR, Ellis JP, Culviner PH, Cavagnero S. 2010. Production of ribosome-released nascent proteins with optimal physical properties. Anal Chem 82: 4637-4643. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55342 | - |
| dc.description.abstract | Ensuring labeling specificity for fluorophore labeling is a challenge in fluorescent spectroscopy. This biophysical technique is one of the primary research tools for studying cotranslational protein folding which studies protein conformation before it has been released from the ribosome. Due to the nature of ribosome-bound nascent chains (RNCs), fluorescent labeling must be coupled with translation during which tRNA acts as the carrier of fluorescent amino acid. In this work, a novel overexpressed suppressor tRNAcysAmber is developed for the production of BODIPY FL-labeled RNCs. In vitro transcription as well as overexpression is tested as the methods of suppressor tRNA production. In order to simplify the purification procedures, Bacillus subtilis tRNAcysAmber has been selected for its distinctive sequence from any endogenous E. coli RNA. In a single purification step, ample amounts of tRNAcysAmber have been obtained. As cysteinyl-tRNA synthetase was previously shown to aminoacylate tRNAcysAmber with low efficiency, several point mutations were introduced into the C-terminus of cysteinyl-tRNA synthetase to compensate for the Amber mutation in the tRNA anticodon loop. Out of the cysteinyl-tRNA synthetase mutants, D436S mutant is shown with improved aminoacylation efficiency and specificity towards tRNAcysAmber. In addition, overexpressed BODIPY FL-cysteinyl-tRNAcysAmber indicates improved stability of this tRNA compared to the in vitro transcribed tRNA. Applying this tRNA, the dynamics of single-labeled RNCs by time-resolved anisotropy was studied to reveal information about the protein folding on the ribosome. The natively unfolded phosphorylated insulin receptor domain (PIR) and the zinc-induced folding in zinc-finger RNC help to correlate the fluorescence correlation time with different nascent chain movements. To further study the impact of chaperones on the RNC dynamics at different stages of translation, Entner-Douderoff aldolase (Eda) RNCs with four predetermined chain length are generated in either the wild-type or chaperone-depleted cell-free system. By applying BODIPY FL-cysteinyl-tRNAcysAmber, our results indicate that Eda may start folding without chaperones after approximately half of the protein emerges from the ribosome. In addition, chaperones increase the nascent chain confinement in the full length Eda RNC, which may cause the decrease the binding of the trigger factor, a co-translational chaperone, due to growing hindrances between RNCs and chaperones. Overall, the facile preparation of suppressor tRNA for labeling with fluorophores is demonstrated together with the application of single-residue labeled nascent chains in studying the effect of chaperones on the RNC dynamics. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:57:32Z (GMT). No. of bitstreams: 1 ntu-103-D99223212-1.pdf: 9987820 bytes, checksum: 5968e31077014264a7e7777a1c1ea4e7 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Abstract i
Acknowledgement iii List of Figures vi List of Tables x Abbreviations xi Introduction 1 Chapter 1: Design and preparation of cysteinyl-tRNA synthetase 6 Materials and methods 9 General 9 Preparation of the cysteinyl-tRNA synthetase 10 Active site titration assay 10 Chapter 2: Preparation of tRNA 12 In vitro transcription 12 Preparation of transcription templates 16 Monitoring RNA transcription optimization 19 Purification of transcribed tRNA 22 tRNA overexpression 31 Overview of in vitro transcription and overexpression for suppressor tRNA production 36 Materials and methods 37 Preparation of transcription templates 37 Screening of transcription conditions 39 RNA transcription, purification and analysis of products 39 Overexpression of Bsu tRNA and isolation of small RNA pool 40 Isolation of Bsu tRNA 41 Chapter 3: Aminoacylation and labeling of tRNA and proteins 42 Testing of cysteinyl-tRNA synthetase mutants 42 Labeling of cysteinyl-tRNAcysAmber 43 Stability of BODIPY FL-cysteinyl-tRNAcysAmber in cell extract 45 Stop-codon suppression by BODIPY FL-cysteinyl-tRNAcysAmber 46 Materials and methods 51 Aminoacylation assay 51 Preparation of BODIPY FL-cysteinyl-tRNA 52 Testing of BODIPY FL-cysteinyl-tRNAcysAmber stability 52 Chapter 4: Time-resolved fluorescence anisotropy of BODIPY FL labeled RNCs 53 Anisotropy analysis of two model RNCs 56 Monitoring the Eda RNCs dynamics in absence of chaperones 62 The influence of chaperones on Eda RNCs dynamics 70 Materials and methods 75 Preparation of template DNA for cell-free reaction 75 Preparation of cell-free system 75 Production of RNCs 76 Time-resolved fluorescence anisotropy measurement 77 Conclusions 78 Appendix I: Theory of fluorescence anisotropy 80 Appendix II: Used nucleotides 86 References 88 | |
| dc.language.iso | en | |
| dc.subject | RNA purification | zh_TW |
| dc.subject | in vitro translation | zh_TW |
| dc.subject | chaperones | zh_TW |
| dc.subject | Protein labeling | zh_TW |
| dc.subject | co-translational protein folding | zh_TW |
| dc.subject | time-resolved fluorescence anisotropy | zh_TW |
| dc.subject | tRNA | zh_TW |
| dc.title | Development of cysteine-specific tRNAs for site-specific protein fluorescence labeling and co-translational protein folding studies | zh_TW |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳平(Richard Ping Cheng) | |
| dc.contributor.oralexamcommittee | 陳長謙(Sunney I. Chan),陳佩燁(Rita P.-Y. Chen),徐尚德(Shang-Te Danny Hsu),劉扶東(Fu-Tong Liu) | |
| dc.subject.keyword | Protein labeling,tRNA,time-resolved fluorescence anisotropy,co-translational protein folding,chaperones,in vitro translation,RNA purification, | zh_TW |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-12-03 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 9.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
