Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超
dc.contributor.authorMeng-Yen Lien
dc.contributor.author李孟諺zh_TW
dc.date.accessioned2021-06-16T03:56:14Z-
dc.date.available2019-02-04
dc.date.copyright2015-02-04
dc.date.issued2015
dc.date.submitted2014-12-12
dc.identifier.citationAli, N., L. Zhang, S. Taylor, A. Mironov, S. Urbe, and P. Woodman. 2013. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol. 23:453-461.
Allard, J.D., H.C. Chang, R. Herbst, H. McNeill, and M.A. Simon. 1996. The SH2-containing tyrosine phosphatase corkscrew is required during signaling by sevenless, Ras1 and Raf. Development. 122:1137-1146.
Alonso, A., J. Sasin, N. Bottini, I. Friedberg, I. Friedberg, A. Osterman, A. Godzik, T. Hunter, J. Dixon, and T. Mustelin. 2004. Protein tyrosine phosphatases in the human genome. Cell. 117:699-711.
Andersen, J.N., R.L. Del Vecchio, N. Kannan, J. Gergel, A.F. Neuwald, and N.K. Tonks. 2005. Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources. Methods. 35:90-114.
Andersen, J.N., O.H. Mortensen, G.H. Peters, P.G. Drake, L.F. Iversen, O.H. Olsen, P.G. Jansen, H.S. Andersen, N.K. Tonks, and N.P. Moller. 2001. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and cellular biology. 21:7117-7136.
Assaker, G., D. Ramel, S.K. Wculek, M. Gonzalez-Gaitan, and G. Emery. 2010. Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proceedings of the National Academy of Sciences of the United States of America. 107:22558-22563.
Baker, N.E., and G.M. Rubin. 1992. Ellipse mutations in the Drosophila homologue of the EGF receptor affect pattern formation, cell division, and cell death in eye imaginal discs. Developmental biology. 150:381-396.
Benmerah, A., M. Bayrou, N. Cerf-Bensussan, and A. Dautry-Varsat. 1999. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci. 112 ( Pt 9):1303-1311.
Benmerah, A., B. Begue, A. Dautry-Varsat, and N. Cerf-Bensussan. 1996. The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps 15 protein. The Journal of biological chemistry. 271:12111-12116.
Benmerah, A., V. Poupon, N. Cerf-Bensussan, and A. Dautry-Varsat. 2000. Mapping of Eps15 domains involved in its targeting to clathrin-coated pits. The Journal of biological chemistry. 275:3288-3295.
Birchmeier, C., W. Birchmeier, E. Gherardi, and G.F. Vande Woude. 2003. Met, metastasis, motility and more. Nature reviews. Molecular cell biology. 4:915-925.
Bogdan, S., and C. Klambt. 2001. Epidermal growth factor receptor signaling. Current biology : CB. 11:R292-295.
Bonifacino, J.S., and L.M. Traub. 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem. 72:395-447.
Bretscher, A., K. Edwards, and R.G. Fehon. 2002. ERM proteins and merlin: integrators at the cell cortex. Nature reviews. Molecular cell biology. 3:586-599.
Chen, D.Y., M.Y. Li, S.Y. Wu, Y.L. Lin, S.P. Tsai, P.L. Lai, Y.T. Lin, J.C. Kuo, T.C. Meng, and G.C. Chen. 2012. The Bro1-domain-containing protein Myopic/HDPTP coordinates with Rab4 to regulate cell adhesion and migration. Journal of cell science. 125:4841-4852.
Chen, G.C., J.Y. Lee, H.W. Tang, J. Debnath, S.M. Thomas, and J. Settleman. 2008. Genetic interactions between Drosophila melanogaster Atg1 and paxillin reveal a role for paxillin in autophagosome formation. Autophagy. 4:37-45.
Chen, H., S. Fre, V.I. Slepnev, M.R. Capua, K. Takei, M.H. Butler, P.P. Di Fiore, and P. De Camilli. 1998. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature. 394:793-797.
Chi, S., H. Cao, J. Chen, and M.A. McNiven. 2008. Eps15 mediates vesicle trafficking from the trans-Golgi network via an interaction with the clathrin adaptor AP-1. Molecular biology of the cell. 19:3564-3575.
Chinkers, M., J.A. McKanna, and S. Cohen. 1979. Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factors. The Journal of cell biology. 83:260-265.
Chishti, A.H., A.C. Kim, S.M. Marfatia, M. Lutchman, M. Hanspal, H. Jindal, S.C. Liu, P.S. Low, G.A. Rouleau, and N. Mohandas. 1998. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in biochemical sciences. 23:281.
Chou, Y.T., H.H. Lin, Y.C. Lien, Y.H. Wang, C.F. Hong, Y.R. Kao, S.C. Lin, Y.C. Chang, S.Y. Lin, S.J. Chen, H.C. Chen, S.D. Yeh, and C.W. Wu. 2010. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res. 70:8822-8831.
Clemens, J.C., Z. Ursuliak, K.K. Clemens, J.V. Price, and J.E. Dixon. 1996. A Drosophila protein-tyrosine phosphatase associates with an adapter protein required for axonal guidance. The Journal of biological chemistry. 271:17002-17005.
Confalonieri, S., and P.P. Di Fiore. 2002. The Eps15 homology (EH) domain. FEBS letters. 513:24-29.
Confalonieri, S., A.E. Salcini, C. Puri, C. Tacchetti, and P.P. Di Fiore. 2000. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. The Journal of cell biology. 150:905-912.
Cupers, P., A.P. Jadhav, and T. Kirchhausen. 1998. Assembly of clathrin coats disrupts the association between Eps15 and AP-2 adaptors. The Journal of biological chemistry. 273:1847-1850.
Di Guglielmo, G.M., C. Le Roy, A.F. Goodfellow, and J.L. Wrana. 2003. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature cell biology. 5:410-421.
Duchek, P., and P. Rorth. 2001. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science. 291:131-133.
Duchek, P., K. Somogyi, G. Jekely, S. Beccari, and P. Rorth. 2001. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell. 107:17-26.
Eden, E.R., I.J. White, and C.E. Futter. 2009. Down-regulation of epidermal growth factor receptor signalling within multivesicular bodies. Biochem Soc Trans. 37:173-177.
Eden, E.R., I.J. White, A. Tsapara, and C.E. Futter. 2010. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nature cell biology. 12:267-272.
Edwards, K., T. Davis, D. Marcey, J. Kurihara, and D. Yamamoto. 2001. Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Gene. 275:195-205.
Fazioli, F., L. Minichiello, B. Matoskova, W.T. Wong, and P.P. Di Fiore. 1993. eps15, a novel tyrosine kinase substrate, exhibits transforming activity. Molecular and cellular biology. 13:5814-5828.
Feng, G.S. 1999. Shp-2 tyrosine phosphatase: signaling one cell or many. Experimental cell research. 253:47-54.
Gabay, L., R. Seger, and B.Z. Shilo. 1997. In situ activation pattern of Drosophila EGF receptor pathway during development. Science. 277:1103-1106.
Gherardi, E., W. Birchmeier, C. Birchmeier, and G. Vande Woude. 2012. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 12:89-103.
Grandal, M.V., and I.H. Madshus. 2008. Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. J Cell Mol Med. 12:1527-1534.
Grant, B.D., and S. Caplan. 2008. Mechanisms of EHD/RME-1 protein function in endocytic transport. Traffic. 9:2043-2052.
Haigler, H.T., J.A. McKanna, and S. Cohen. 1979. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. The Journal of cell biology. 81:382-395.
Harris, R.C., E. Chung, and R.J. Coffey. 2003. EGF receptor ligands. Experimental cell research. 284:2-13.
Hawash, I.Y., K.P. Kesavan, A.I. Magee, R.L. Geahlen, and M.L. Harrison. 2002. The Lck SH3 domain negatively regulates localization to lipid rafts through an interaction with c-Cbl. J Biol Chem. 277:5683-5691.
Hirano, S., M. Kawasaki, H. Ura, R. Kato, C. Raiborg, H. Stenmark, and S. Wakatsuki. 2006. Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nature structural & molecular biology. 13:272-277.
Hironaka, K., H. Umemori, T. Tezuka, M. Mishina, and T. Yamamoto. 2000. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J Biol Chem. 275:16167-16173.
Hong, C.F., Y.T. Chou, Y.S. Lin, and C.W. Wu. 2009. MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation. J Biol Chem. 284:19613-19622.
Hopkins, C.R. 1992. Selective membrane protein trafficking: vectorial flow and filter. Trends in biochemical sciences. 17:27-32.
Hou, S.W., H.Y. Zhi, N. Pohl, M. Loesch, X.M. Qi, R.S. Li, Z. Basir, and G. Chen. 2010. PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res. 70:2901-2910.
Huang, C.H., T.Y. Lin, R.L. Pan, and J.L. Juang. 2007a. The involvement of Abl and PTP61F in the regulation of Abi protein localization and stability and lamella formation in Drosophila S2 cells. The Journal of biological chemistry. 282:32442-32452.
Huang, F., L.K. Goh, and A. Sorkin. 2007b. EGF receptor ubiquitination is not necessary for its internalization. Proceedings of the National Academy of Sciences of the United States of America. 104:16904-16909.
Huang, H.R., Z.J. Chen, S. Kunes, G.D. Chang, and T. Maniatis. 2010. Endocytic pathway is required for Drosophila Toll innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America. 107:8322-8327.
Hunter, T. 2009. Tyrosine phosphorylation: thirty years and counting. Current opinion in cell biology. 21:140-146.
Jorissen, R.N., F. Walker, N. Pouliot, T.P. Garrett, C.W. Ward, and A.W. Burgess. 2003. Epidermal growth factor receptor: mechanisms of activation and signalling. Experimental cell research. 284:31-53.
Jung, Y., P. Kim, J. Keum, S.N. Kim, Y.S. Choi, I.G. Do, J. Lee, S.J. Choi, S. Kim, J.E. Lee, J. Kim, and S. Lee. 2012. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer. 51:590-597.
Kazazic, M., V. Bertelsen, K.W. Pedersen, T.T. Vuong, M.V. Grandal, M.S. Rodland, L.M. Traub, E. Stang, and I.H. Madshus. 2009. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic. 10:235-245.
Kazazic, M., K. Roepstorff, L.E. Johannessen, N.M. Pedersen, B. van Deurs, E. Stang, and I.H. Madshus. 2006. EGF-induced activation of the EGF receptor does not trigger mobilization of caveolae. Traffic. 7:1518-1527.
Kim, E., and M. Sheng. 2004. PDZ domain proteins of synapses. Nature Reviews Neuroscience. 5:771-781.
Kina, S., T. Tezuka, S. Kusakawa, Y. Kishimoto, S. Kakizawa, K. Hashimoto, M. Ohsugi, Y. Kiyama, R. Horai, K. Sudo, S. Kakuta, Y. Iwakura, M. Iino, M. Kano, T. Manabe, and T. Yamamoto. 2007. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci. 26:2269-2278.
Ku, H.Y., C.L. Wu, L. Rabinow, G.C. Chen, and T.C. Meng. 2009. Organization of F-actin via concerted regulation of Kette by PTP61F and dAbl. Molecular and cellular biology. 29:3623-3632.
Labbe, D.P., S. Hardy, and M.L. Tremblay. 2012. Protein tyrosine phosphatases in cancer: friends and foes! Prog Mol Biol Transl Sci. 106:253-306.
Lessard, L., M. Stuible, and M.L. Tremblay. 2010. The two faces of PTP1B in cancer. Biochim Biophys Acta. 1804:613-619.
Lowenstein, E.J., R.J. Daly, A.G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, E.Y. Skolnik, D. Bar-Sagi, and J. Schlessinger. 1992. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 70:431-442.
Martin-Blanco, E., F. Roch, E. Noll, A. Baonza, J.B. Duffy, and N. Perrimon. 1999. A temporal switch in DER signaling controls the specification and differentiation of veins and interveins in the Drosophila wing. Development. 126:5739-5747.
Martina, J.A., C.J. Bonangelino, R.C. Aguilar, and J.S. Bonifacino. 2001. Stonin 2: an adaptor-like protein that interacts with components of the endocytic machinery. The Journal of cell biology. 153:1111-1120.
Miura, G.I., J.Y. Roignant, M. Wassef, and J.E. Treisman. 2008. Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development. 135:1913-1922.
Morrison, D.K., M.S. Murakami, and V. Cleghon. 2000. Protein kinases and phosphatases in the Drosophila genome. The Journal of cell biology. 150:F57-62.
Murphy, L.O., S. Smith, R.H. Chen, D.C. Fingar, and J. Blenis. 2002. Molecular interpretation of ERK signal duration by immediate early gene products. Nature cell biology. 4:556-564.
Naslavsky, N., J. Rahajeng, S. Chenavas, P.L. Sorgen, and S. Caplan. 2007. EHD1 and Eps15 interact with phosphatidylinositols via their Eps15 homology domains. The Journal of biological chemistry. 282:16612-16622.
Nomura, M., H. Shigematsu, L. Li, M. Suzuki, T. Takahashi, P. Estess, M. Siegelman, Z. Feng, H. Kato, A. Marchetti, J.W. Shay, M.R. Spitz, Wistuba, II, J.D. Minna, and A.F. Gazdar. 2007. Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Med. 4:e125.
Olayioye, M.A., R.M. Neve, H.A. Lane, and N.E. Hynes. 2000. The ErbB signaling network: receptor heterodimerization in development and cancer. The EMBO journal. 19:3159-3167.
Orlandi, P.A., and P.H. Fishman. 1998. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol. 141:905-915.
Pao, W., V. Miller, M. Zakowski, J. Doherty, K. Politi, I. Sarkaria, B. Singh, R. Heelan, V. Rusch, L. Fulton, E. Mardis, D. Kupfer, R. Wilson, M. Kris, and H. Varmus. 2004. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America. 101:13306-13311.
Parachoniak, C.A., and M. Park. 2009. Distinct recruitment of Eps15 via Its coiled-coil domain is required for efficient down-regulation of the met receptor tyrosine kinase. The Journal of biological chemistry. 284:8382-8394.
Parpal, S., M. Karlsson, H. Thorn, and P. Stralfors. 2001. Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. The Journal of biological chemistry. 276:9670-9678.
Pasquali, C., M.L. Curchod, S. Walchli, X. Espanel, M. Guerrier, F. Arigoni, G. Strous, and R. Hooft van Huijsduijnen. 2003. Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Molecular endocrinology. 17:2228-2239.
Perkins, L.A., M.R. Johnson, M.B. Melnick, and N. Perrimon. 1996. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Developmental biology. 180:63-81.
Pignoni, F., and S.L. Zipursky. 1997. Induction of Drosophila eye development by decapentaplegic. Development. 124:271-278.
Regan-Klapisz, E., I. Sorokina, J. Voortman, P. de Keizer, R.C. Roovers, P. Verheesen, S. Urbe, L. Fallon, E.A. Fon, A. Verkleij, A. Benmerah, and P.M. van Bergen en Henegouwen. 2005. Ubiquilin recruits Eps15 into ubiquitin-rich cytoplasmic aggregates via a UIM-UBL interaction. Journal of cell science. 118:4437-4450.
Roxrud, I., C. Raiborg, N.M. Pedersen, E. Stang, and H. Stenmark. 2008. An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor. The Journal of cell biology. 180:1205-1218.
Sakurada, A., F.A. Shepherd, and M.S. Tsao. 2006. Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clinical lung cancer. 7 Suppl 4:S138-144.
Salcini, A.E., S. Confalonieri, M. Doria, E. Santolini, E. Tassi, O. Minenkova, G. Cesareni, P.G. Pelicci, and P.P. Di Fiore. 1997. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes & development. 11:2239-2249.
Samuel, S., and M.D. Sitrin. 2008. Vitamin D's role in cell proliferation and differentiation. Nutr Rev. 66:S116-124.
Santonico, E., S. Panni, M. Falconi, L. Castagnoli, and G. Cesareni. 2007. Binding to DPF-motif by the POB1 EH domain is responsible for POB1-Eps15 interaction. BMC biochemistry. 8:29.
Schumacher, C., B.S. Knudsen, T. Ohuchi, P.P. Di Fiore, R.H. Glassman, and H. Hanafusa. 1995. The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R. The Journal of biological chemistry. 270:15341-15347.
Sebastian, S., J. Settleman, S.J. Reshkin, A. Azzariti, A. Bellizzi, and A. Paradiso. 2006. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochimica et biophysica acta. 1766:120-139.
Seshacharyulu, P., M.P. Ponnusamy, D. Haridas, M. Jain, A.K. Ganti, and S.K. Batra. 2012. Targeting the EGFR signaling pathway in cancer therapy. Expert opinion on therapeutic targets. 16:15-31.
Sharma, S.V., D.W. Bell, J. Settleman, and D.A. Haber. 2007. Epidermal growth factor receptor mutations in lung cancer. Nature reviews. Cancer. 7:169-181.
Shilo, B.Z. 2003. Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp Cell Res. 284:140-149.
Sibilia, M., R. Kroismayr, B.M. Lichtenberger, A. Natarajan, M. Hecking, and M. Holcmann. 2007. The epidermal growth factor receptor: from development to tumorigenesis. Differentiation; research in biological diversity. 75:770-787.
Sigismund, S., E. Argenzio, D. Tosoni, E. Cavallaro, S. Polo, and P.P. Di Fiore. 2008. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Developmental cell. 15:209-219.
Sigismund, S., T. Woelk, C. Puri, E. Maspero, C. Tacchetti, P. Transidico, P.P. Di Fiore, and S. Polo. 2005. Clathrin-independent endocytosis of ubiquitinated cargos. Proceedings of the National Academy of Sciences of the United States of America. 102:2760-2765.
Sorkin, A., and L.K. Goh. 2008. Endocytosis and intracellular trafficking of ErbBs. Experimental cell research. 314:3093-3106.
Sorkin, A., and L.K. Goh. 2009. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res. 315:683-696.
Sorkin, A., S. Krolenko, N. Kudrjavtceva, J. Lazebnik, L. Teslenko, A.M. Soderquist, and N. Nikolsky. 1991. Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways. The Journal of cell biology. 112:55-63.
Sozio, M.S., M.A. Mathis, J.A. Young, S. Walchli, L.A. Pitcher, P.C. Wrage, B. Bartok, A. Campbell, J.D. Watts, R. Aebersold, R. Hooft van Huijsduijnen, and N.S. van Oers. 2004. PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit. The Journal of biological chemistry. 279:7760-7769.
Stocker, H., M. Andjelkovic, S. Oldham, M. Laffargue, M.P. Wymann, B.A. Hemmings, and E. Hafen. 2002. Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science. 295:2088-2091.
Stoscheck, C.M., and G. Carpenter. 1984. Down regulation of epidermal growth factor receptors: direct demonstration of receptor degradation in human fibroblasts. The Journal of cell biology. 98:1048-1053.
Struhl, G., and K. Basler. 1993. Organizing activity of wingless protein in Drosophila. Cell. 72:527-540.
Sun, T., N. Aceto, K.L. Meerbrey, J.D. Kessler, C. Zhou, I. Migliaccio, D.X. Nguyen, N.N. Pavlova, M. Botero, J. Huang, R.J. Bernardi, E. Schmitt, G. Hu, M.Z. Li, N. Dephoure, S.P. Gygi, M. Rao, C.J. Creighton, S.G. Hilsenbeck, C.A. Shaw, D. Muzny, R.A. Gibbs, D.A. Wheeler, C.K. Osborne, R. Schiff, M. Bentires-Alj, S.J. Elledge, and T.F. Westbrook. 2011. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell. 144:703-718.
Tarcic, G., S.K. Boguslavsky, J. Wakim, T. Kiuchi, A. Liu, F. Reinitz, D. Nathanson, T. Takahashi, P.S. Mischel, T. Ng, and Y. Yarden. 2009. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr Biol. 19:1788-1798.
Tiganis, T. 2002. Protein tyrosine phosphatases: dephosphorylating the epidermal growth factor receptor. IUBMB life. 53:3-14.
Tiganis, T., and A.M. Bennett. 2007. Protein tyrosine phosphatase function: the substrate perspective. The Biochemical journal. 402:1-15.
Tonks, N.K. 2003. PTP1B: from the sidelines to the front lines! FEBS Lett. 546:140-148.
Tonks, N.K. 2006. Protein tyrosine phosphatases: from genes, to function, to disease. Nature reviews. Molecular cell biology. 7:833-846.
Tonks, N.K. 2013. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. The FEBS journal. 280:346-378.
Topffer, S., A. Muller-Schiffmann, K. Matentzoglu, M. Scheffner, and G. Steger. 2007. Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. Journal of General Virology. 88:2956.
van Bergen En Henegouwen, P.M. 2009. Eps15: a multifunctional adaptor protein regulating intracellular trafficking. Cell communication and signaling : CCS. 7:24.
Visbal, A.L., B.A. Williams, F.C. Nichols, 3rd, R.S. Marks, J.R. Jett, M.C. Aubry, E.S. Edell, J.A. Wampfler, J.R. Molina, and P. Yang. 2004. Gender differences in non-small-cell lung cancer survival: an analysis of 4,618 patients diagnosed between 1997 and 2002. The Annals of thoracic surgery. 78:209-215; discussion 215.
Wadham, C., J.R. Gamble, M.A. Vadas, and Y. Khew-Goodall. 2000. Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. Journal of Cell Science. 113:3117.
Wang, Q., G. Villeneuve, and Z. Wang. 2005. Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO reports. 6:942-948.
Wang, Z., D. Shen, D.W. Parsons, A. Bardelli, J. Sager, S. Szabo, J. Ptak, N. Silliman, B.A. Peters, M.S. van der Heijden, G. Parmigiani, H. Yan, T.L. Wang, G. Riggins, S.M. Powell, J.K. Willson, S. Markowitz, K.W. Kinzler, B. Vogelstein, and V.E. Velculescu. 2004. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 304:1164-1166.
Whited, J.L., M.B. Robichaux, J.C. Yang, and P.A. Garrity. 2007. Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development. 134:43.
Wiley, H.S. 1988. Anomalous binding of epidermal growth factor to A431 cells is due to the effect of high receptor densities and a saturable endocytic system. The Journal of cell biology. 107:801-810.
Wong, W.T., C. Schumacher, A.E. Salcini, A. Romano, P. Castagnino, P.G. Pelicci, and P.P. Di Fiore. 1995. A protein-binding domain, EH, identified in the receptor tyrosine kinase substrate Eps15 and conserved in evolution. Proceedings of the National Academy of Sciences of the United States of America. 92:9530-9534.
Woodman, P. 2009. ESCRT proteins, endosome organization and mitogenic receptor down-regulation. Biochem Soc Trans. 37:146-150.
Wu, C.W., J.H. Chen, H.L. Kao, A.F. Li, C.H. Lai, C.W. Chi, and W.C. Lin. 2006. PTPN3 and PTPN4 tyrosine phosphatase expression in human gastric adenocarcinoma. Anticancer Res. 26:1643-1649.
Xu, Y., L.J. Tan, V. Grachtchouk, J.J. Voorhees, and G.J. Fisher. 2005. Receptor-type protein-tyrosine phosphatase-kappa regulates epidermal growth factor receptor function. The Journal of biological chemistry. 280:42694-42700.
Yarden, Y., and M.X. Sliwkowski. 2001. Untangling the ErbB signalling network. Nature reviews. Molecular cell biology. 2:127-137.
Yuan, T., Y. Wang, Z.J. Zhao, and H. Gu. 2010. Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. The Journal of biological chemistry. 285:14861-14870.
Zhang, S.H., R. Kobayashi, P.R. Graves, H. Piwnica-Worms, and N.K. Tonks. 1997. Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein. J Biol Chem. 272:27281-27287.
Zhang, S.H., J. Liu, R. Kobayashi, and N.K. Tonks. 1999. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem. 274:17806-17812.
Zheng, Y., J. Schlondorff, and C.P. Blobel. 2002. Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. The Journal of biological chemistry. 277:42463-42470.
Zhi, H.Y., S.W. Hou, R.S. Li, Z. Basir, Q. Xiang, A. Szabo, and G. Chen. 2011. PTPH1 cooperates with vitamin D receptor to stimulate breast cancer growth through their mutual stabilization. Oncogene. 30:1706-1715.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55315-
dc.description.abstract表皮生長因子受體(EGFR)能調控多個不同的訊息傳遞路徑影響細胞的增殖,生長和分化。利用遺傳學篩選,我們發現果蠅中具有FERM和PDZ結構域的蛋白酪氨酸磷酸酶dPtpmeg,能負向調控果蠅邊界細胞遷移,抑制表皮生長因子受體下游的Ras/ MAPK訊號傳導影響果蠅翅膀發育。我們進一步確定了EGFR受質15(Eps15)為dPtpmeg和其人類同源蛋白PTPN3的共同受質。 Eps15是已知參與在表皮生長因子受體的內吞作用和運送接架蛋白。研究中發現有趣的是,由PTPN3所導致的Eps15酪氨酸去磷酸化能促進表皮生長因子受體的脂筏介導內吞作用和溶酶體降解。 PTPN3和Eps15酪氨酸磷酸化缺少突變能抑制非小細胞肺癌細胞的生長和細胞遷移的作用,並減少肺腫瘤異種移植的生長。此外,降低PTPN3會抑制表皮生長因子受體的降解,並增強擴散肺癌細胞和致瘤性。綜合上述結果,PTPN3可透過調控表皮生長因子受體訊息傳導,來抑制肺癌的進程,在肺癌中PTPN3扮演著腫瘤抑制的角色。zh_TW
dc.description.abstractEpidermal growth factor receptor (EGFR) regulates multiple signaling cascades essential for cell proliferation, growth, and differentiation. Using a genetic approach, we found that Drosophila FERM and PDZ domain-containing protein tyrosine phosphatase, dPtpmeg, negatively regulates border cell migration and inhibits the EGFR/Ras/MAPK signaling pathway during wing morphogenesis. We further identified EGFR pathway substrate 15 (Eps15) as a target of dPtpmeg and its human homolog PTPN3. Eps15 is a scaffolding adaptor protein known to be involved in EGFR endocytosis and trafficking. Interestingly, PTPN3-mediated tyrosine dephosphorylation of Eps15 promotes EGFR for lipid raft-mediated endocytosis and lysosomal degradation. PTPN3 and the Eps15 tyrosine phosphorylation-deficient mutant suppress non-small cell lung cancer cell growth and migration in vitro and reduce lung tumor xenograft growth in vivo. Moreover, depletion of PTPN3 impairs the degradation of EGFR and enhances proliferation and tumorigenicity of lung cancer cells. Taken together, these results indicate that PTPN3 may act as a tumor suppressor in lung cancer through its modulation of EGFR signaling.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:56:14Z (GMT). No. of bitstreams: 1
ntu-104-F96b46014-1.pdf: 4953539 bytes, checksum: 710e31736a5393158b0d556aff6a8987 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要..........................................................................................................................1
Abstract……………………………………………………………………………........2
Chapter I
Introduction…………………………………………………………..............……....…3
1.1 Protein tyrosine phosphatases…………….……………......................................….3
1.2 Protein tyrosine phosphatases in Drosophila………………………….……….…...5
1.3 The characterization and function of Drosophila Ptpmeg……………………..…...6
1.4 The characterization and function of mammalian PTPN3………………….......…..7
1.5 Epidermal growth factor receptor (EGFR) and downstream signaling….....….…...9
1.6 Endocytosis and intracellular trafficking of EGFR………………………………..11
1.7 EGFR and cancer…………………………………………………........…….........12
1.8 The relationship between EGFR and protein tyrosine phosphatases.......................13
1.9 EGFR pathway substrate 15 (Eps15).......................................................................14
Chapter II
Materials and Methods…………………………………………………..……..…......18
2.1 Plasmids and antibodies...........................................................................................18
2.2 Cell culture, immunoprecipitation, and immunoblotting........................................19
2.3 In vitro pull-down assays........................................................................................19
2.4 In vitro dephosphorylation assay............................................................................20
2.5 Preparation of lipid raft membranes........................................................................20
2.6 Xenograft tumorigenicity assay..............................................................................20
2.7 Drosophila strains and genetics..............................................................................21
2.8 In vitro substrate-trapping and MS-based analysis..............................................21
2.9 In vitro kinase assay.............................................................................................22
2.10 In vitro wound-healing and transwell migration assay......................................22
2.11 Immunofluorescence..........................................................................................22
2.12 Cell growth and colony formation assay............................................................23
2.13 Immunohistochemistry.......................................................................................23
2.14 Flow cytometry analysis.....................................................................................24
2.15 Statistical analysis...............................................................................................24
Chapter III
Results…………………………………………………………………………..…….25
3.1 Drosophila Ptpmeg is involved in regulating border cell migration......................25
3.2 Drosophila Ptpmeg affect wing vein formation through the EGFR signaling pathway.........................................................................................................................26
3.3 Identification of dPtpmeg potential substrates by substrate trapping.....................27
3.4 Identification of Eps15 as a substrate of dPtpmeg.................................................28
3.5 Eps15 is a substrate of PTPN3 in mammalian cells..............................................29
3.6 PTPN3 directly binds to Eps15 in vitro.................................................................30
3.7 PTPN3-mediated Eps15 dephosphorylation promotes EGFR for lysosomal degradation..................................................................................................................31
3.8 PTPN3 promotes EGFR degradation via non-clathrin-mediated endocytosis......33
3.9 Ectopic expression of PTPN3 and Eps15-Y850F inhibits lung cancer growth.....34
3.10 Depletion of PTPN3 impairs EGFR degradation and enhances the tumorigenic potential of lung cancer cells.......................................................................................35
Chapter IV
Discussions………………………………………………………………………..…..38
Chapter V
Figures…………………………………………………………………………...…....43
Figure 1. Drosophila Ptpmeg affects border cells migration.........................................43
Figure 2. dPtpmeg homozygous mutants elevate phosphotyrosine levels.....................44
Figure 3. dPtpmeg negatively regulates of EGFR signaling.........................................45
Figure 4. MAPK phosphorylation is decreased in dPtpmeg expressing cells ..............46
Figure 5. Putative substrates of dPtpmeg are identified by Mass spectrometry-based substrate trapping method.............................................................................................47
Figure 6. Identification of Eps15 is a substrate of dPtpmeg.........................................48
Figure 7. Eps15 is a substrate of PTPN3 in mammalian cells......................................49
Figure 8. PTPN23 and Shp2 not affect EGF-induced Eps15 tyrosine phosphorylation............................................................................................................50
Figure 9. PTPN3 directly interacts with Eps15............................................................51
Figure 10. In vitro translated Eps15 interacts with PTPN3..........................................52
Figure 11. PTPN3 promotes the dephosphorylation of Eps15 on Tyr 850 site............53
Figure 12. Endogenous PTPN3 co-localizes with EGFR in H1975 and A549 cells....54
Figure 13. PTPN3 not directly interacts and dephosphorylates EGFR upon EGF stimulation....................................................................................................................55
Figure 14. PTPN3-mediated Eps15 dephosphorylation not affects EGFR internalization...............................................................................................................56
Figure 15. PTPN3 and Eps15-Y850F on the intracellular localization of EGF-Alexa 488 and endosomal markers..........................................................................................57
Figure 16. EGF largely colocalized with LAMP-2 in PTPN3 or Eps15-Y850F expressing cells.............................................................................................................58
Figure 17. PTPN3 and Eps15-Y850F mutation cause a drastic reduction in the EGFR protein as well as EGF-induced phosphorylation of MAPK.........................................59
Figure 18. Ectopic expression of PTPN3 and Eps15-Y850F reduce EGFR but not Met levels..............................................................................................................................60
Figure 19. Treatment of cells with bafilomycin A1 but not MG132 suppresses PTPN3 and Eps15-Y850F-induced degradation of EGFR........................................................61
Figure 20. Colocalization of EGF-488 and caveolin-1 in PTPN3 and Eps15-Y850F expressing cells..............................................................................................................63
Figure 21. PTPN3-mediated Eps15 dephosphorylation promotes EGFR endocytotic trafficking through a non-clathrin pathway...................................................................64
Figure 22. Treating cells with MβCD and filipin affect PTPN3 or Eps15-Y850F induced EGFR degradation...........................................................................................65
Figure 23. Ectopic expression of PTPN3 or Eps15-Y850F markedly inhibits cell proliferation, colony formation and cell migration.......................................................66
Figure 24. PTPN3 and Eps15-Y850F have a growth inhibitory effect on tumor formation and development in vivo................................................................................67
Figure 25. Quantitative real-time PCR (qRT-PCR) analyses reveal higher expression of PTPN3 in NSCLC cell lines.........................................................................................68
Figure 26. Depletion of PTPN3 leads to an impairment of EGFR degradation...........69
Figure 27. Depletion of PTPN3 not affects EGFR distribution or the endocytic pathway........................................................................................................................70
Figure 28. Depletion of PTPN3 promotes cell proliferation of NSCLC in vitro and tumor growth in vivo......................................................................................................72
Figure 29. Eps15b is a substrate of PTPN3 and PTPN3 is not involved in TGN..........74
Figure 30. Model of PTPN3-mediated tyrosine dephosphorylation of Eps15 modulates EGFR endocytic degradation.........................................................................................75
Chapter VI
Supplemental information....……………......................................................….....…...76
Figure S1. Eps15b and Eps15R are both isoforms of Eps15.........................................76
Table 1. PTPN3 interacting proteins..............................................................................77
Table 2. Plasmids list.....................................................................................................79
Table 3. Antibody list....................................................................................................81
Chapter VII
References………………………………………………………………………...…...83
dc.language.isoen
dc.subject表皮生長因子受體zh_TW
dc.subject蛋白酪氨酸磷酸?zh_TW
dc.subject非小細胞肺癌細胞zh_TW
dc.subjectEpidermal growth factor receptor (EGFR)en
dc.subjectprotein tyrosine phosphataseen
dc.subjectnon-small cell lung canceren
dc.title探討PTPN3調控表皮生長因子受體(EGFR)內吞降解與抑制肺癌細胞進程之機轉zh_TW
dc.titleThe mechanism of PTPN3 regulates EGFR endocytic degradation and inhibits lung cancer cell progressionen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee孟子青,張震東,李明亭,吳漢忠
dc.subject.keyword表皮生長因子受體,蛋白酪氨酸磷酸?,非小細胞肺癌細胞,zh_TW
dc.subject.keywordEpidermal growth factor receptor (EGFR),protein tyrosine phosphatase,non-small cell lung cancer,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2014-12-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved