請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55308完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳克強 | |
| dc.contributor.author | Ya-Ting Hsu | en |
| dc.contributor.author | 許雅婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:55:54Z | - |
| dc.date.available | 2020-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-12-17 | |
| dc.identifier.citation | Alinsug, M., Yu, C.W., and Wu, K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biol. 9, 37.
Balasubramanian, S., Sureshkumar, S., Lempe, J. and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS. Genet. 2, e106. Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16, S18-S31. Bowman, J.L., Baum, S.F., Eshed, Y., Putterill, J., and Alvarez, J. (1999). Molecular genetics of gynoecium development in Arabidopsis. Curr. Top. Dev. Biol. 45, 155-205. Davies, B., and Schwarz-Sommer. (1994). Control of floral organ identity by homeotic MADS-box transcription factors. Results and Problems in Cell Dzfferentiation (Nover, L. ed.) 20, 235 -258. Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466. Flanagan, C. A., and Ma, H. (1994). Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Biol. 26, 581-595. Gu, X., Jiang, D., Wang, Y., Bachmair, A., and He, Y. (2009). Repression of the floral transition via histone H2B monoubiquitination. Plant J. 57, 522–533. Gu, X., Le, C., Wang, Y., Li, Z., Jiang, D., Wang, Y., and He, Y. (2013). Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nature Communications 4, 1947. Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., and Dennis, E.S. (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a highmolecular- weight protein complex. Plant J. 46, 183–192. Henderson, I.R., and Dean, C. (2004). Control of Arabidopsis flowering: the chill before the bloom. Development 131, 3829-3838. Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., and Coupland, G. (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21, 4327–4337. Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074-1080. Kim, D.H., and Sung, S. (2013). Coordination of the vernalization response through a VIN3 and FLC gene family regulatory network in Arabidopsis. Plant cell 25, 454–469. Kim, W., Latrasse, D., Servet, C., and Zhou, D.X. (2013). Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19. Biochem. Biophys. Res. Commun. 432, 394-398. Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M., and Lee, I. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 2366–2376. Luger, K., Rechsteiner, T.J., Flaus, A.J., Waye, M.M.Y., and Richmond, T.J. (1997). Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301-311. Michaels, S.D., and Amasino, R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956. Murfett, J., Wang, X.J., Hagen, G., and Guilfoyle, T.J. (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13, 1047-1061. Norman, C., Runswick, M., Pollock, R., and Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55, 989–1003. Pandey, R., Muller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res. 30, 5036-5055. Passmore, S., Maine, G.T., Elble, R., Christ, C., and Tye, B.K. (1988). Saccharomycescerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cells. J. Mol. Biol. 204, 593–606. Ratcliffe, O.J., Kumimoto, R.W., Wong, B.J., and Riechmann, J. L. (2003). Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15, 1159–1169. Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L., and Riechmann, J.L. (2001). Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 126, 122–132. Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. J. Biol. Chem. 378, 1079-1101. Saedler, H., and Huijser, P. (1993). Molecular biology of flower development in Antirrhinum majus (snapdragon). Gene 135, 239- 243. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613–1616. Scortecci, K. C., Michaels, S. D., and Amasino, R. M. (2003). Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant. Mol. Biol. 52, 915–922. Scortecci, K. C., Michaels, S.D., and Amasino, R.M. (2001). Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J. 26, 229–236. Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20, 898–912. Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and Dennis, E.S. (1999). The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445–458. Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur. J. Biochem. 229, 1 – 13. Sommer, H., Beltran, JP., Huijser, P., Pape, H., Lonnig, W., Saedler, H., and Schwarz- Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605. Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone midifications. Nature 403, 41-45. Tanaka, M., Kikuchi, A., and Kamada, H. (2008). The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 146, 149–161. Tian, B., Hu, J., Zhang, H., and Lutz, C.S. (2005). A large-scale analysis of Mrna polyadenylation of human and mouse genes. Nucleic Acids Res. 33, 201-212. Tian, L., and Chen, J.Z. (2001). Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc. Natl. Acad. Sci. USA 98, 200–205. Tian, L., Wang, J., Fong, M.P., Chen, M., and Cao, H. (2003). Genetic control of developmental changes induced by disruption of Arabidopsis histone deacetylase 1 (AtHD1) expression. Genetics 165, 399–409. Turck, F., Fornara, F., and Coupland, G. (2008). Regulation and identity of florigen: flowering locus T moves center stage. Annu. Rev. Plant. Biol. 59, 573–594. Turner, B.M. (2000). Histone acetylation and an epigenetic code. BioEassay 22, 536-845. Weigel, D. (1995). The genetics of flower development - from floral induction to ovule morphogenesis. Annu. Rev. Genet. 29, 19-39. Weigel, D., and Meyerowitz, E. M. (1994). The ABCs of floral homeotic genes. Cell 78, 203-209. Wu, K., Malik, K., Tian, L., Brown, D., and Miki, B. (2000). Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Mol. Biol. 44, 167-176. Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot. 59, 225-234. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39. Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156, 173–184. Yun, J., Kim, Y.S., Jung, J.H., Seo, P.J., and Park, C.M. (2012). The AT-hook motifcontaining protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J. Biol. Chem. 287, 15307-16. Zhou, Y.G., Chen, Y.M., and Huang, B. (2005). Experimental study of seismic cyclic loading effects on small strain shear modulus of saturated sands. Science 3, 229-236. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55308 | - |
| dc.description.abstract | 阿拉伯芥轉錄因子FLC是調控開花很重要的負調控因子,FLC會透過抑制下游的開花正調控因子FT和SOC1去抑制開花。阿拉伯芥有五個與FLC同源的蛋白,MAF1、MAF2、MAF3、MAF4和MAF5。這些MAF蛋白和FLC一樣,在抑制阿拉伯芥開花上扮演著重要的角色。阿拉伯芥HDA9是屬於RPD3/HDA1類型的組蛋白去乙醯化酵素,hda9的突變株會有早開花的現象。我們觀察到flc、maf1和hda9的突變株不論是在短日照或長日照都會有早開花的現象。經由檢測基因表現結果發現FT和SOC1會受到MAF1和HDA9的抑制,而且雙分子螢光互補實驗 (bimolecular fluorescence complementation assays) 和酵母雙雜交實驗(yeast two- hybrid assays)證實了FLC和MAF1都可以跟HDA9相互作用。綜合以上結果,HDA9可能會透過與FLC和MAF1相互作用去抑制FT和SOC1的表現而影響植物開花。 | zh_TW |
| dc.description.abstract | FLC is a key regulator of flowering in Arabidopsis thaliana. FLC inhibits flowering by repressing FT and SOC1 genes that promote flowering. There are five FLC clade members, MAF1, MAF2, MAF3, MAF4 and MAF5 in Arabidopsis. Like FLC, MAF1 to MAF5 also act as repressors of flowering. Arabidopsis HDA9 belongs to the RPD3/HDA1 histone deacetylase, and hda9 mutants have an early flowering phenotype. In this study, we analyzed the flowering phenotype of flc, maf1 and hda9 mutants. Compared with wild type plants, flc, maf1 and hda9 plants flowered earlier under both long-day or short-day conditions. In addition, the expression of FT and SOC1 was significantly increased in maf1 and hda9 plants. Further analysis indicated that HDA9 interacted with FLC and MAF1 in bimolecular fluorescence complementation and yeast two- hybrid assays. These results indicated that HDA9 may interact with FLC and MAF1 to repress the expression of FT and SOC1. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:55:54Z (GMT). No. of bitstreams: 1 ntu-103-R01b42036-1.pdf: 2187126 bytes, checksum: 5de7007343a251aebf4cf833af6e828c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Index III List of Tables IV List of Figures V List of Supplementary Figures VI List of Abbreviations VII Introduction 1 MADS-box transcription factors 1 Role of FLC and MAF1 in flowering 2 Histone deacetylases 4 Materials and Methods 8 Plant Materials 8 Quick DNA extraction 8 RNA isolation 9 RT-PCR analysis 11 Quantitative real-time PCR (qPCR) 11 Bimolecular Fluorescence Complementation (BiFC) assays in Arabidopsis protoplasts 12 Transfection of tobaco leaves by Agrobacterium 16 Yeast two-hybrid assays 17 Results 18 Phylogenic analysis and sequence comparison of FLC and MAF proteins. 18 Subcellular localization of FLC and MAF proteins 18 Interaction of HDA9 with FLC, MAF1 and MAF4 19 Identification of MAF1, MAF4 and MAF5 T-DNA insertion mutants. 20 The flc and maf1 mutants displayed earlier flowering phenotypes 20 Expression of flowering activaters FT and SOC1 22 Discussion 23 Figures 27 Tables 46 References 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | HDA9 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 組蛋白去乙醯化? | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | MAF1 | zh_TW |
| dc.subject | FLC | zh_TW |
| dc.subject | Arabidopsis thaliana | en |
| dc.subject | MAF1 | en |
| dc.subject | histone deacetylase | en |
| dc.subject | HDA9 | en |
| dc.subject | flowering | en |
| dc.subject | FLC | en |
| dc.title | 阿拉伯芥FLC和MAF1與HDA9互作參與開花調控之功能性研究 | zh_TW |
| dc.title | Arabidopsis FLC and MAF1 interact with HDA9 involved in flowering time control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝旭亮,林讚標,葉開溫,張英? | |
| dc.subject.keyword | FLC,MAF1,HDA9,組蛋白去乙醯化?,開花,阿拉伯芥, | zh_TW |
| dc.subject.keyword | FLC,MAF1,histone deacetylase,HDA9,flowering,Arabidopsis thaliana, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-12-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
