請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55304完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄 | |
| dc.contributor.author | Ting-Tzu Huang | en |
| dc.contributor.author | 黃婷資 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:55:43Z | - |
| dc.date.available | 2024-02-06 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-12-18 | |
| dc.identifier.citation | References
1. Gupta, R., and Ramnani, P. (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70, 21-33 2. Akhtar, W., and Edwards, H. G. (1997) Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers. Spectrochim Acta A Mol Biomol Spectrosc 53A, 81-90 3. Papadopoulos, M. C. (1986) The Effect of Enzymatic Treatment on Amino-Acid Content and Nitrogen Characteristics of Feather Meal. Animal Feed Science and Technology 16, 151-156 4. Evans, K. L., Crowder, J., and Miller, E. S. (2000) Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can J Microbiol 46, 1004-1011 5. Brouta, F., Descamps, F., Fett, T., Losson, B., Gerday, C., and Mignon, B. (2001) Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med Mycol 39, 269-275 6. Allpress, J. D., Mountain, G., and Gowland, P. C. (2002) Production, purification and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Lett Appl Microbiol 34, 337-342 7. Lee, H., Suh, D. B., Hwang, J. H., and Suh, H. J. (2002) Characterization of a keratinolytic metalloprotease from Bacillus sp. SCB-3. Appl Biochem Biotechnol 97, 123-133 8. Brandelli, A. (2008) Bacterial Keratinases: Useful Enzymes for Bioprocessing Agroindustrial Wastes and Beyond. Food and Bioprocess Technology 1, 105-116 9. Brandelli, A., Daroit, D. J., and Riffel, A. (2010) Biochemical features of microbial keratinases and their production and applications. Applied Microbiology and Biotechnology 85, 1735-1750 10. Ramnani, P., Singh, R., and Gupta, R. (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51, 191-196 11. Gupta, R., Sharma, R., and Beg, Q. K. (2013) Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 33, 216-228 12. Kim, J. S., Kluskens, L. D., de Vos, W. M., Huber, R., and van der Oost, J. (2004) Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. Journal of molecular biology 335, 787-797 13. Williams, C. M., Richter, C. S., Mackenzie, J. M., and Shih, J. C. (1990) Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56, 1509-1515 14. Lin, X., Lee, C.-G., Casale, E. S., and Shih, J. C. (1992) Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Applied and Environmental Microbiology 58, 3271-3275 15. Riffel, A., and Brandelli, A. (2006) Keratinolytic bacteria isolated from feather waste. Brazilian Journal of Microbiology 37, 395-399 16. Tamilmani, P., Umamaheswari, A., Vinayagam, A., and Prakash, B. (2008) Production of an extra cellular feather degrading enzyme by Bacillus licheniformis isolated from poultry farm soil in Namakkal district (Tamilnadu). International Journal of Poultry Science 7, 184-188 17. Vesela, M., and Friedrich, J. (2009) Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnology and Bioprocess Engineering 14, 84-90 18. Vigneshwaran, C., Shanmugam, S., and Kumar, T. S. (2010) Screening and Characterization of Keratinase from Bacillus licheniformis Isolated From Namakkalpoultry Farm. Researcher 2, 89-96 19. BioResource-International. (2011) Recent research results at poultry science association meeting. online available: http://www.briworldwide.com/bri-presents-recent-research-results-at-poultry-science-association-meeting/. 20. Narasimha Murthy, S., Wiskirchen, D. E., and Paul Bowers, C. (2007) Iontophoretic drug delivery across human nail. Journal of Pharmaceutical Sciences 96, 305-311 21. Pandeeti, E. V., Pitchika, G. K., Jotshi, J., Nilegaonkar, S. S., Kanekar, P. P., and Siddavattam, D. (2011) Enzymatic depilation of animal hide: identification of elastase (LasB) from Pseudomonas aeruginosa MCM B-327 as a depilating protease. PLoS One 6, e16742 22. Radha, S., and Gunasekaran, P. (2007) Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J Appl Microbiol 103, 1301-1310 23. Preston, R. (2002) Acne-how to prevent and overcome acne forever. International Institute of Nutritional Research 24. Wang, P., Wang, Q., Cui, L., Gao, M., and Fan, X. (2011) The combined use of cutinase, keratinase and protease treatments for wool bio-antifelting. Fibers and Polymers 12, 760-764 25. Kumar, R., Balaji, S., Uma, T., Mandal, A., and Sehgal, P. (2008) Optimization of influential parameters for extracellular keratinase production of Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal-a biowaste management. Applied biochemistry and biotechnology 160, 30-39 26. Saha, S., and Dhanasekaran, D. (2010) Isolation and screening of keratinolytic actinobacteria form keratin waste dumped soil in Tiruchirappalli and Nammakkal, Tamil Nadu, India. Current Research Journal of Biological Sciences 2, 124-131 27. Okoroma, E. A., Purchase, D., Garelick, H., Morris, R., Neale, M. H., Windl, O., and Abiola, O. O. (2013) Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PLoS One 8, e68099 28. Siezen, R. J., and Leunissen, J. A. M. (1997) Subtilases: The superfamily of subtilisin-like serine proteases. Protein Science 6, 501-523 29. Siezen, R. J., Renckens, B., and Boekhorst, J. (2007) Evolution of prokaryotic subtilases: Genome-wide analysis reveals novel subfamilies with different catalytic residues. Proteins: Structure, Function, and Bioinformatics 67, 681-694 30. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983) Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res 11, 7911-7925 31. Stahl, M. L., and Ferrari, E. (1984) Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation. J Bacteriol 158, 411-418 32. Vasantha, N., Thompson, L. D., Rhodes, C., Banner, C., Nagle, J., and Filpula, D. (1984) Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 159, 811-819 33. Jacobs, M., Eliasson, M., Uhlen, M., and Flock, J. I. (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13, 8913-8926 34. Ikemura, H., and Inouye, M. (1988) In vitro processing of pro-subtilisin produced in Escherichia coli. The Journal of biological chemistry 263, 12959-12963 35. Takagi, H., Morinaga, Y., Tsuchiya, M., Ikemura, H., and Inouye, M. (1988) Control of Folding of Proteins Secreted by a High Expression Secretion Vector, Pin-Iii-Ompa - 16-Fold Increase in Production of Active Subtilisin-E in Escherichia-Coli. Bio-Technol 6, 948-950 36. Winther, J. R., and Sorensen, P. (1991) Propeptide of Carboxypeptidase-Y Provides a Chaperone-Like Function as Well as Inhibition of the Enzymatic-Activity. Proceedings of the National Academy of Sciences of the United States of America 88, 9330-9334 37. Richo, G. R., and Conner, G. E. (1994) Structural Requirements of Procathepsin-D Activation and Maturation. Journal of Biological Chemistry 269, 14806-14812 38. Shinde, U., Li, Y. Y., Chatterjee, S., and Inouye, M. (1993) Folding Pathway Mediated by an Intramolecular Chaperone. Proceedings of the National Academy of Sciences of the United States of America 90, 6924-6928 39. Shinde, U., and Inouye, M. (1993) Intramolecular Chaperones and Protein-Folding. Trends in Biochemical Sciences 18, 442-446 40. Zhu, X. L., Ohta, Y., Jordan, F., and Inouye, M. (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339, 483-484 41. Eder, J., Rheinnecker, M., and Fersht, A. R. (1993) Folding of Subtilisin Bpn' - Role of the Pro-Sequence. Journal of molecular biology 233, 293-304 42. Strausberg, S., Alexander, P., Wang, L., Schwarz, F., and Bryan, P. (1993) Catalysis of a Protein-Folding Reaction - Thermodynamic and Kinetic-Analysis of Subtilisin Bpn' Interactions with Its Propeptide Fragment. Biochemistry 32, 8112-8119 43. Silen, J. L., and Agard, D. A. (1989) The Alpha-Lytic Protease Pro-Region Does Not Require a Physical Linkage to Activate the Protease Domain Invivo. Nature 341, 462-464 44. Baker, D., Sohl, J. L., and Agard, D. A. (1992) A Protein-Folding Reaction under Kinetic Control. Nature 356, 263-265 45. Lee, Y. C., Ohta, T., and Matsuzawa, H. (1992) A Noncovalent Nh2-Terminal Pro-Region Aids the Production of Active Aqualysin-I (a Thermophilic Protease) without the Cooh-Terminal Pro-Sequence in Escherichia-Coli. Fems Microbiology Letters 92, 73-78 46. Yabuta, Y., Takagi, H., Inouye, M., and Shinde, U. (2001) Folding Pathway Mediated by an Intramolecular Chaperone PROPEPTIDE RELEASE MODULATES ACTIVATION PRECISION OF PRO-SUBTILISIN. Journal of Biological Chemistry 276, 44427-44434 47. Shinde, U. P., Liu, J. J., and Inouye, M. (1997) Protein memory through altered folding mediated by intramolecular chaperones. Nature 389, 520-522 48. Bryan, P. N. (2002) Prodomains and protein folding catalysis. Chemical reviews 102, 4805-4816 49. Chen, Y.-J., and Inouye, M. (2008) The intramolecular chaperone-mediated protein folding. Current Opinion in Structural Biology 18, 765-770 50. Shinde, U., and Inouye, M. (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Seminars in Cell & Developmental Biology 11, 35-44 51. Eder, J., and Fersht, A. R. (1995) Pro-sequence-assisted protein folding. Molecular Microbiology 16, 609-614 52. Li, Y., and Inouye, M. (1994) Autoprocessing of prothiolsubtilisin E in which active-site serine 221 is altered to cysteine. The Journal of biological chemistry 269, 4169-4174 53. Inouye, M., Fu, X., and Shinde, U. (2001) Substrate-induced activation of a trapped IMC-mediated protein folding intermediate. Nature structural biology 8, 321-325 54. Yabuta, Y., Takagi, H., Inouye, M., and Shinde, U. (2001) Folding pathway mediated by an intramolecular chaperone - Propeptide release modulates activation precision of pro-subtilisin. Journal of Biological Chemistry 276, 44427-44434 55. Matsuzawa, H., Hamaoki, M., and Ohta, T. (1983) Production of Thermophilic Extracellular Proteases (Aqualysin-I and Aqualysin-Ii) by Thermus-Aquaticus Yt-1,an Extreme Thermophile. Agricultural and biological chemistry 47, 25-28 56. Kwon, S. T., Terada, I., Matsuzawa, H., and Ohta, T. (1988) Nucleotide sequence of the gene for aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1 and characteristics of the deduced primary structure of the enzyme. Eur J Biochem 173, 491-497 57. Pohlner, J., Halter, R., Beyreuther, K., and Meyer, T. F. (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458-462 58. Yanagida, N., Uozumi, T., and Beppu, T. (1986) Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coli. J Bacteriol 166, 937-944 59. Lin, S. J., Yoshimura, E., Sakai, H., Wakagi, T., and Matsuzawa, H. (1999) Weakly bound calcium ions involved in the thermostability of aqualysin I, a heat-stable subtilisin-type protease of Thermus aquaticus YT-1. Biochimica et biophysica acta 1433, 132-138 60. Kwon, S.-T., Matsuzawa, H., and Ohta, T. (1988) Determination of the positions of the disulfide bonds in aqualysin I (a thermophilic alkaline serine protease) of Thermus aquaticus YT-1. Journal of biochemistry 104, 557-559 61. Matsuzawa, H., Tokugawa, K., Hamaoki, M., Mizoguchi, M., Taguchi, H., Terada, I., Kwon, S. T., and Ohta, T. (1988) Purification and characterization of aqualysin I (a thermophilic alkaline serine protease) produced by Thermus aquaticus YT-1. Eur J Biochem 171, 441-447 62. Yabuta, Y., Takagi, H., Inouye, M., and Shinde, U. (2001) Folding pathway mediated by an intramolecular chaperone: propeptide release modulates activation precision of pro-subtilisin. The Journal of biological chemistry 276, 44427-44434 63. Russell, A. J., and Klibanov, A. M. (1988) Inhibitor-induced enzyme activation in organic solvents. The Journal of biological chemistry 263, 11624-11626 64. Klibanov, A. M. (1995) Enzyme memory. What is remembered and why? Nature 374, 596 65. Barr, P. J. (1991) Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66, 1-3 66. Shinde, U. P., Liu, J. J., and Inouye, M. (1997) Protein memory through altered folding mediated by intramolecular chaperones. Nature 389, 520-522 67. Bauer, C., and Jelkmann, W. (1977) Carbon dioxide governs the oxygen affinity of crocodile blood. Nature 269, 825-827 68. Bauer, C., Forster, M., Gros, G., Mosca, A., Perrella, M., Rollema, H. S., and Vogel, D. (1981) Analysis of bicarbonate binding to crocodilian hemoglobin. The Journal of biological chemistry 256, 8429-8435 69. Perutz, M. F., Bauer, C., Gros, G., Leclercq, F., Vandecasserie, C., Schnek, A. G., Braunitzer, G., Friday, A. E., and Joysey, K. A. (1981) Allosteric regulation of crocodilian haemoglobin. Nature 291, 682-684 70. Komiyama, N. H., Miyazaki, G., Tame, J., and Nagai, K. (1995) Transplanting a unique allosteric effect from crocodile into human haemoglobin. Nature 373, 244-246 71. Schafer, G. (1992) Extremophiles: fascinating organisms with surprising capabilities. J Bioenerg Biomembr 24, 525-527 72. Cava, F., Hidalgo, A., and Berenguer, J. (2009) Thermus thermophilus as biological model. Extremophiles 13, 213-231 73. Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51, 711-729 74. van den Burg, B. (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6, 213-218 75. Pantazaki, A. A., Pritsa, A. A., and Kyriakidis, D. A. (2002) Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58, 1-12 76. Chien, A., Edgar, D. B., and Trela, J. M. (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127, 1550-1557 77. Eckert, K. A., and Kunkel, T. A. (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Research 18, 3739-3744 78. Holland, P. M., Abramson, R. D., Watson, R., and Gelfand, D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5'----3'exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences 88, 7276-7280 79. Liebl, W. (2004) Genomics taken to the extreme. Nat Biotechnol 22, 524-525 80. Wang, T. F., and Wang, A. H. (2006) Preparation of sticky-end PCR products and ligation into expression vectors for high-throughput screening of soluble recombinant proteins. CSH protocols 2006 81. Wang, T. F., and Wang, A. H. (2006) Preparation of vectors for high-throughput screening of soluble recombinant proteins. CSH protocols 2006 82. Chiu, J., March, P. E., Lee, R., and Tillett, D. (2004) Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic acids research 32, e174 83. Tomarelli, R., Charney, J., and Harding, M. L. (1949) The use of azoalbumin as a substrate in the colorimetric determination or peptic and tryptic activity. The Journal of laboratory and clinical medicine 34, 428 84. Riffel, A., Lucas, F., Heeb, P., and Brandelli, A. (2003) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179, 258-265 85. Moore, S. (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. Journal of Biological Chemistry 243, 6281-6283 86. Moore, S., Spackman, D. H., and Stein, W. H. (1958) Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Analytical Chemistry 30, 1185-1190 87. Moore, S., Spackman, D. H., and Stein, W. H. (1958) Automatic recording apparatus for use in the chromatography of amino acids. Fed Proc 17, 1107-1115 88. Prakash, P., Jayalakshmi, S. K., and Sreeramulu, K. (2010) Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl Microbiol Biotechnol 87, 625-633 89. Letourneau, F., Soussotte, V., Bressollier, P., Branland, P., and Verneuil, B. (1998) Keratinolytic activity of Streptomyces sp. S.K1-02: a new isolated strain. Lett Appl Microbiol 26, 77-80 90. Twining, S. S. (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Analytical Biochemistry 143, 30-34 91. Gousterova, A., Braikova, D., Goshev, I., Christov, P., Tishinov, K., Vasileva‐Tonkova, E., Haertle, T., and Nedkov, P. (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Letters in applied microbiology 40, 335-340 92. Uehara, R., Takeuchi, Y., Tanaka, S., Takano, K., Koga, Y., and Kanaya, S. (2012) Requirement of Ca(2+) ions for the hyperthermostability of Tk-subtilisin from Thermococcus kodakarensis. Biochemistry 51, 5369-5378 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55304 | - |
| dc.description.abstract | 角蛋白酶是一種蛋白質水解酵素,他能降解結構非常堅硬且一般酵素無法分解的的角蛋白。近年來,這類角蛋白酶已漸漸受到大眾的重視,無論是在環境保護或是生物技術應用方面,都具有很高的應用價值。然而,雖然目前已有很多角蛋白酶被發現,但其複雜的水解機制仍然存留許多不解。
先前,我們成功地從台灣本土嗜熱菌分離出一個新的角蛋白酶,從結構比對結果,我們發現一個與之結構極為相似的蛋白質,其命名為aqualysin,此蛋白酶來自另一株更耐高溫的嗜熱菌Thermus aquaticus,卻從未有相關文獻指出其具有角蛋白酶的活性;因此,我們利用偶氮角蛋白 (azokeratin) 當作水解受質,證實aqualysin確實具有高活性的角蛋白水解功能,並測得其活性最佳條件。此外,藉由分析具有不同功能性片段的aqualysin,我們發現此蛋白酶必須在有N端內分子伴護蛋白區塊 (intramolecular chaperone, NAQ) 的存在下,才能將蛋白適當摺疊成具有活性的構型。為了進一步證明NAQ是否具有角蛋白水解功能的記憶,並引導蛋白酶摺疊成具有角蛋白酶活性的構型,我們將NAQ置換到來自台灣本土嗜熱菌,其不具角蛋白酶活性的類枯草桿菌蛋白SPR2216之中。幸運地,SPR2216在嵌入NAQ之後,成功的獲得了原本並不具備的角蛋白酶活性;而這也證明了NAQ 對於幫助蛋白酶區塊獲得角蛋白水解功能記憶的過程中,扮演了非常重要的角色。因此,運用此基因工程的方法,將能提供有效的資訊來建構出新型且具有不同特性的角蛋白酶。至於NAQ是如何幫助蛋白酶摺疊,以及更細節的分子機制,還需要更進一步的研究探討。 | zh_TW |
| dc.description.abstract | Keratinases are proteolytic enzymes responsible for the degradation of highly recalcitrant keratin substrates. They have gradually captured the attention in the realms of environmental and biotechnological application. Although these enzymes have widely been discovered, the complex mechanism of keratinolysis has not yet been well-understood.
Previously, we successfully identified a novel keratinase from Meiothermus taiwanensis. Based on the structural similarity, we found a subtilisin-like protease from Thermus aquaticus named aqualysin, which has not yet been reported as a keratinase. Based on azokeratin assays, we confirmed that aqualysin is a highly efficient keratinase. Furthermore, the results from the truncate studies suggested that propeptide of aqualysin (NAQ), an intramolecular chaperone, was an indispensable domain for the keratinolytic activity. To verify whether NAQ possessed the protein memory for keratinolysis and guided protease to fold as a keratinase, we swapped NAQ to a subtilisin-like protease, SPR2216 from Meiothermus taiwanensis, which possessed no keratinolytic activity. Fortunately, we successfully obtained NAQ-fused SPR2216 which possessed gain-of-function for keratinolysis. Importantly, we demonstrated the significant role of NAQ for protease domains to acquire the memory of “keratinase-fold”. These findings would be very useful for generating new keratinases with additional characteristics. However, more studies should be made to further elucidate the detailed molecular mechanisms of how NAQ helped protease domain fold. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:55:43Z (GMT). No. of bitstreams: 1 ntu-103-R01b46006-1.pdf: 3389094 bytes, checksum: 165d59014383eda4cb8621bbad3c6d02 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
摘要 IV Abstract V 1. Introduction 1 1.1 Keratinase 1 1.2 Subtilisin-like proteases 4 Figure 1. Domain arrangement of subtilisin protease. 4 Figure 2. propeptide-mediated protein folding mechanism 6 1.3 Aqualysin 7 Figure 3. Domains of aqualysin and their functions 7 1.4 Protein memory 9 1.5 Domain swapping 11 1.6 Thermophile 12 1.7 Aims and backgrounds of this study 14 2. Materials and Methods 15 2.1. Cloning of aqualysin, its derivatives, and other subtilisin-like proteases 15 2.2. Protein expression and purification 20 2.3. Keratinase screen 21 2.4. Milk/Feather degradation assay 21 2.5. Synthesis of azokeratin 22 2.6. Azokeratin degradation assay 23 2.7. Ninhydrin assay 23 2.8. Collagen degradation assay 24 2.9. Disulfide reductase assay 24 2.10. Keratin azure degradation assay 25 2.11. FITC-a-casein assay 25 3. Results and Discussions 27 3.1. Validation of aqualysin as a keratin-degrading enzyme 27 Figure 4. Validation of aqualysin as a keratinase 28 3.2. Identification of keratinase-related domains in aqualysin 29 Figure 5. Identification of keratinase-related domains in aqualysin 30 3.3. pH and temperature effects on aqualysin 31 Figure 6. Purification of aqualysin 33 Figure 7. pH and temperature effects on aqualysin 34 Figure 8. Collagen degradation assay of aqualysin 35 3.4. Mechanism for aqualysin-mediated keratinolysis 36 Figure 9. Pure aqualysin could degrade intact feathers. 38 Figure 10. Aqualysin did not possess disulfide reductase activity 39 Figure 11. Mechanisms for keratin degradation 40 Figure 12. Structure of aqualysin. 41 3.5. Domain swapping of subtilisin-related proteases 42 3.5.1 Hypothesis for NAQ-guided keratinase-fold 43 Figure 13. Rationale for NAQ-guided intramolecular chaperone swapping.49 3.5.2 The targets of subtilisin-like proteases for domain swapping 45 3.5.3 SPR2216 served as a good candidate for NAQ-swapping 45 Figure 14. Sequence alignment of aqualysin and SPR2216 46 3.5.4 NAQ-fused MSPR2216 possessed novel function in keratinolysis 47 Figure 15. The lysate of NMChimera possessed keratinolytic activity. 50 Figure 16. Purified well-folded NMWT protease 51 Figure 17. Purification of NMChimera 52 Figure 18. NMChimera could refold as an active keratinase 53 Figure 19. Purified NMChimera possessed keratinolytic activity 54 Figure 20. NMChimera showed less keratinolytic activity than aqualysin 57 Figure 21. Hypothesis for sequence-induced pocket width difference 58 3.5.6 Subtilisin E was a novel keratinase 59 Figure 22. SDS-PAGE of purified subtilisin E 60 Figure 23. Subtilisin was a novel keratinase 61 References 62 Appendix 70 Appendix 1. The example results for milk/feather degradation assay 70 Appendix 2. Sequence alignments among aqualysin and target proteases 71 Appendix 3. Optimization for keratin azure assay 72 | |
| dc.language.iso | en | |
| dc.subject | 角蛋白? | zh_TW |
| dc.subject | 類枯草桿菌蛋白 | zh_TW |
| dc.subject | Aqualysin | zh_TW |
| dc.subject | 內分子伴護蛋白? | zh_TW |
| dc.subject | 功能區置換 | zh_TW |
| dc.subject | subtilisin-like protease | en |
| dc.subject | keratinase | en |
| dc.subject | domain swapping | en |
| dc.subject | intramolecular chaperone | en |
| dc.subject | aqualysin | en |
| dc.title | 運用基因工程嵌入伴護蛋白功能區塊以建構新型的角蛋白酶 | zh_TW |
| dc.title | Engineering novel keratinases through an intramolecular chaperone swapping approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁博煌,徐駿森,花國鋒,何孟樵 | |
| dc.subject.keyword | 角蛋白?,類枯草桿菌蛋白,Aqualysin,內分子伴護蛋白?,功能區置換, | zh_TW |
| dc.subject.keyword | keratinase,subtilisin-like protease,aqualysin,intramolecular chaperone,domain swapping, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-12-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
