請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55289完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖淑貞 | |
| dc.contributor.author | Ming-Che Liu | en |
| dc.contributor.author | 劉明哲 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:55:01Z | - |
| dc.date.available | 2020-03-12 | |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-12-24 | |
| dc.identifier.citation | 1. Rozalski A, Sidorczyk Z, Kotelko K. 1997. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev 61:65-89.
2. Coker C, Poore CA, Li X, Mobley HL. 2000. Pathogenesis of Proteus mirabilis urinary tract infection. Microbes and infection / Institut Pasteur 2:1497-1505. 3. Jansen AM, Lockatell V, Johnson DE, Mobley HL. 2004. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infection and immunity 72:7294-7305. 4. Zunino P, Geymonat L, Allen AG, Preston A, Sosa V, Maskell DJ. 2001. New aspects of the role of MR/P fimbriae in Proteus mirabilis urinary tract infection. FEMS immunology and medical microbiology 31:113-120. 5. Mobley HL, Chippendale GR, Tenney JH, Mayrer AR, Crisp LJ, Penner JL, Warren JW. 1988. MR/K hemagglutination of Providencia stuartii correlates with adherence to catheters and with persistence in catheter-associated bacteriuria. The Journal of infectious diseases 157:264-271. 6. Armbruster CE, Mobley HL. 2012. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 10:743-754. 7. Bahrani FK, Massad G, Lockatell CV, Johnson DE, Russell RG, Warren JW, Mobley HL. 1994. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infection and immunity 62:3363-3371. 8. Zhao H, Li X, Johnson DE, Blomfield I, Mobley HL. 1997. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Molecular microbiology 23:1009-1019. 9. Li X, Lockatell CV, Johnson DE, Mobley HL. 2002. Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Molecular microbiology 45:865-874. 10. Zunino P, Sosa V, Schlapp G, Allen AG, Preston A, Maskell DJ. 2007. Mannose-resistant Proteus-like and P. mirabilis fimbriae have specific and additive roles in P. mirabilis urinary tract infections. FEMS immunology and medical microbiology 51:125-133. 11. Johnson DE, Russell RG, Lockatell CV, Zulty JC, Warren JW, Mobley HL. 1993. Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection. Infection and immunity 61:2748-2754. 12. Mobley HL, Chippendale GR, Swihart KG, Welch RA. 1991. Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infection and immunity 59:2036-2042. 13. Senior BW, Loomes LM, Kerr MA. 1991. The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol 35:203-207. 14. Belas R, Manos J, Suvanasuthi R. 2004. Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infection and immunity 72:5159-5167. 15. Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R. 1999. ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Molecular microbiology 32:825-836. 16. Swihart KG, Welch RA. 1990. Cytotoxic activity of the Proteus hemolysin HpmA. Infection and immunity 58:1861-1869. 17. Miles AA, Khimji PL. 1975. Enterobacterial chelators of iron: their occurrence, detection, and relation to pathogenicity. J Med Microbiol 8:477-490. 18. Allison C, Lai HC, Hughes C. 1992. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Molecular microbiology 6:1583-1591. 19. Belas R, Erskine D, Flaherty D. 1991. Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol 173:6279-6288. 20. Allison C, Emody L, Coleman N, Hughes C. 1994. The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. The Journal of infectious diseases 169:1155-1158. 21. Pearson MM, Rasko DA, Smith SN, Mobley HL. 2010. Transcriptome of swarming Proteus mirabilis. Infection and immunity 78:2834-2845. 22. Dufour A, Furness RB, Hughes C. 1998. Novel genes that upregulate the Proteus mirabilis flhDC master operon controlling flagellar biogenesis and swarming. Molecular microbiology 29:741-751. 23. Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, Molin S, Kjelleberg S. 1998. Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:742-745. 24. Sabbuba NA, Mahenthiralingam E, Stickler DJ. 2003. Molecular epidemiology of Proteus mirabilis infections of the catheterized urinary tract. Journal of clinical microbiology 41:4961-4965. 25. Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. 2008. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical microbiology reviews 21:26-59. 26. Smith SG, Mahon V, Lambert MA, Fagan RP. 2007. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273:1-11. 27. Prasadarao NV, Wass CA, Weiser JN, Stins MF, Huang SH, Kim KS. 1996. Outer membrane protein A of Escherichia coli contributes to invasion of brain microvascular endothelial cells. Infection and immunity 64:146-153. 28. Nielubowicz GR, Smith SN, Mobley HL. 2008. Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infection and immunity 76:4222-4231. 29. Orme R, Douglas CW, Rimmer S, Webb M. 2006. Proteomic analysis of Escherichia coli biofilms reveals the overexpression of the outer membrane protein OmpA. Proteomics 6:4269-4277. 30. Barrios AF, Zuo R, Ren D, Wood TK. 2006. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnology and bioengineering 93:188-200. 31. Pratt LA, Hsing W, Gibson KE, Silhavy TJ. 1996. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Molecular microbiology 20:911-917. 32. Ragnarsdottir B, Lutay N, Gronberg-Hernandez J, Koves B, Svanborg C. 2011. Genetics of innate immunity and UTI susceptibility. Nature reviews. Urology 8:449-468. 33. Weichhart T, Haidinger M, Horl WH, Saemann MD. 2008. Current concepts of molecular defence mechanisms operative during urinary tract infection. European journal of clinical investigation 38 Suppl 2:29-38. 34. Drake R. 2010. Genetics: TLR4 promoter variants influence response to UTI. Nature reviews. Urology 7:365. 35. Pearson MM, Yep A, Smith SN, Mobley HL. 2011. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infection and immunity 79:2619-2631. 36. Helmann JD. 2002. The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47-110. 37. Alba BM, Gross CA. 2004. Regulation of the Escherichia coli sigma-dependent envelope stress response. Molecular microbiology 52:613-619. 38. Rowley G, Spector M, Kormanec J, Roberts M. 2006. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4:383-394. 39. Hayden JD, Ades SE. 2008. The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli. PLoS ONE 3:e1573. 40. Rezuchova B, Miticka H, Homerova D, Roberts M, Kormanec J. 2003. New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1-7. 41. De Las Penas A, Connolly L, Gross CA. 1997. SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 179:6862-6864. 42. Govan JR, Deretic V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539-574. 43. Crouch ML, Becker LA, Bang IS, Tanabe H, Ouellette AJ, Fang FC. 2005. The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Molecular microbiology 56:789-799. 44. Kenyon WJ, Sayers DG, Humphreys S, Roberts M, Spector MP. 2002. The starvation-stress response of Salmonella enterica serovar Typhimurium requires sigma(E)-, but not CpxR-regulated extracytoplasmic functions. Microbiology 148:113-122. 45. Testerman TL, Vazquez-Torres A, Xu Y, Jones-Carson J, Libby SJ, Fang FC. 2002. The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Molecular microbiology 43:771-782. 46. Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC, Vogel J. 2006. SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Molecular microbiology 62:1674-1688. 47. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5-25. 48. Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS. 2008. Corynebacterium glutamicum sigmaE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE. Microbiology 154:915-923. 49. Kazmierczak MJ, Wiedmann M, Boor KJ. 2005. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69:527-543. 50. Heusipp G, Schmidt MA, Miller VL. 2003. Identification of rpoE and nadB as host responsive elements of Yersinia enterocolitica. FEMS Microbiol Lett 226:291-298. 51. Sheehan BJ, Bosse JT, Beddek AJ, Rycroft AN, Kroll JS, Langford PR. 2003. Identification of Actinobacillus pleuropneumoniae genes important for survival during infection in its natural host. Infection and immunity 71:3960-3970. 52. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568-6572. 53. Liu MC, Lin SB, Chien HF, Wang WB, Yuan YH, Hsueh PR, Liaw SJ. 2012. 10'(Z),13'(E)-heptadecadienylhydroquinone inhibits swarming and virulence factors and increases polymyxin B susceptibility in Proteus mirabilis. PLoS One 7:e45563. 54. Kascsak RJ, Rubenstein R, Merz PA, Tonna-DeMasi M, Fersko R, Carp RI, Wisniewski HM, Diringer H. 1987. Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. Journal of virology 61:3688-3693. 55. Jiang SS, Liu MC, Teng LJ, Wang WB, Hsueh PR, Liaw SJ. 2010. Proteus mirabilis pmrI, an RppA-regulated gene necessary for polymyxin B resistance, biofilm formation, and urothelial cell invasion. Antimicrobial agents and chemotherapy 54:1564-1571. 56. Wang WB, Chen IC, Jiang SS, Chen HR, Hsu CY, Hsueh PR, Hsu WB, Liaw SJ. 2008. Role of RppA in the regulation of polymyxin b susceptibility, swarming, and virulence factor expression in Proteus mirabilis. Infection and immunity 76:2051-2062. 57. Jiang SS, Lin TY, Wang WB, Liu MC, Hsueh PR, Liaw SJ. 2010. Characterization of UDP-glucose dehydrogenase and UDP-glucose pyrophosphorylase mutants of Proteus mirabilis: defectiveness in polymyxin B resistance, swarming, and virulence. Antimicrobial agents and chemotherapy 54:2000-2009. 58. Del Porto P, Cifani N, Guarnieri S, Di Domenico EG, Mariggio MA, Spadaro F, Guglietta S, Anile M, Venuta F, Quattrucci S, Ascenzioni F. 2011. Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa. PLoS One 6:e19970. 59. Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS. 2011. Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS pathogens 7:e1002454. 60. Wang MC, Chien HF, Tsai YL, Liu MC, Liaw SJ. 2014. The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis. PLoS One 9:e85626. 61. Baig A. 2011 Biochemical Composition of Normal Urine. Nature precedings. 62. Thompson KM, Rhodius VA, Gottesman S. 2007. SigmaE regulates and is regulated by a small RNA in Escherichia coli. J Bacteriol 189:4243-4256. 63. Leon R, Espin G. 2008. flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. Microbiology 154:1719-1728. 64. Li X, Rasko DA, Lockatell CV, Johnson DE, Mobley HL. 2001. Repression of bacterial motility by a novel fimbrial gene product. The EMBO journal 20:4854-4862. 65. Vogel J, Papenfort K. 2006. Small non-coding RNAs and the bacterial outer membrane. Current opinion in microbiology 9:605-611. 66. Yu Y, Zeng H, Lyons S, Carlson A, Merlin D, Neish AS, Gewirtz AT. 2003. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. American journal of physiology. Gastrointestinal and liver physiology 285:G282-290. 67. Kagnoff MF, Eckmann L. 1997. Epithelial cells as sensors for microbial infection. The Journal of clinical investigation 100:6-10. 68. Sohanpal BK, Kulasekara HD, Bonnen A, Blomfield IC. 2001. Orientational control of fimE expression in Escherichia coli. Molecular microbiology 42:483-494. 69. Holden N, Blomfield IC, Uhlin BE, Totsika M, Kulasekara DH, Gally DL. 2007. Comparative analysis of FimB and FimE recombinase activity. Microbiology 153:4138-4149. 70. Rentschler AE, Lovrich SD, Fitton R, Enos-Berlage J, Schwan WR. 2012. OmpR Regulation of the Uropathogenic Escherichia coli fimB Gene in an Acidic/High Osmolality Environment. Microbiology. 71. Schwan WR, Shibata S, Aizawa S, Wolfe AJ. 2007. The two-component response regulator RcsB regulates type 1 piliation in Escherichia coli. J Bacteriol 189:7159-7163. 72. Lane MC, Li X, Pearson MM, Simms AN, Mobley HL. 2009. Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J Bacteriol 191:1382-1392. 73. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science (New York, N.Y.) 282:1494-1497. 74. Nielubowicz GR, Mobley HL. 2010. Host-pathogen interactions in urinary tract infection. Nature reviews. Urology 7:430-441. 75. De Lay N, Gottesman S. 2012. A complex network of small non-coding RNAs regulate motility in Escherichia coli. Molecular microbiology 86:524-538. 76. Zhou X, Giron JA, Torres AG, Crawford JA, Negrete E, Vogel SN, Kaper JB. 2003. Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infection and immunity 71:2120-2129. 77. Umpierrez A, Scavone P, Romanin D, Marques JM, Chabalgoity JA, Rumbo M, Zunino P. 2013. Innate immune responses to Proteus mirabilis flagellin in the urinary tract. Microbes and infection / Institut Pasteur 15:688-696. 78. Saban MR, Saban R, Hammond TG, Haak-Frendscho M, Steinberg H, Tengowski MW, Bjorling DE. 2002. LPS-sensory peptide communication in experimental cystitis. American journal of physiology. Renal physiology 282:F202-210. 79. Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical microbiology reviews 22:240-273, Table of Contents. 80. Ernst RK, Guina T, Miller SI. 2001. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes and infection / Institut Pasteur 3:1327-1334. 81. Klein G, Lindner B, Brade H, Raina S. 2011. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-alpha-D-manno-oct-2-ulosonic acid and rhamnose. The Journal of biological chemistry 286:42787-42807. 82. Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, Konig N, Pai EF, Pauptit RA, Rizkallah PJ, Rosenbusch JP, et al. 1995. The structure of OmpF porin in a tetragonal crystal form. Structure (London, England : 1993) 3:1041-1050. 83. Marshall LJ, Ramdin LS, Brooks T, PC DP, Shute JK. 2003. Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. Journal of immunology (Baltimore, Md. : 1950) 171:2057-2065. 84. Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nature reviews. Immunology 13:159-175. 85. Errea A, Moreno G, Sisti F, Fernandez J, Rumbo M, Hozbor DF. 2010. Mucosal innate response stimulation induced by lipopolysaccharide protects against Bordetella pertussis colonization. Medical microbiology and immunology 199:103-108. 86. Liaw SJ, Lai HC, Ho SW, Luh KT, Wang WB. 2000. Inhibition of virulence factor expression and swarming differentiation in Proteus mirabilis by p-nitrophenylglycerol. J Med Microbiol 49:725-731. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55289 | - |
| dc.description.abstract | 奇異變形桿菌(Proteus mirabilis)屬於伺機性感染人類泌尿道的病原菌,感染的對象主要為尿道不健全或長期插尿導管的病人,膀胱炎、腎結石,腎臟病。先天免疫系統的活化、抗菌胜肽以及中性球的聚集可以清除泌尿道中的細菌感染,而細菌的毒力及適應因子可以幫助其逃避免疫機制。本篇研究的目的在於找出奇異變形桿菌如何感受宿主環境及啟動免疫逃避的機制,我們發現sigma factor E (RpoE)可以調控奇異變形桿菌困境生存的基因及在逃避宿主免疫中扮演重要角色。
為了觀察奇異變形桿菌RpoE在逃避宿主免疫機制中的角色,我們創造了rpoE及rseA突變株 (RseA蛋白的功能在於抑制RpoE,若被去除將造成RpoE過度表現)。本研究利用qPCR發現RpoE正向調控MR/P纖毛基因及抑制鞭毛合成基因flhDC及fliC1的表現。MrpI是一種重組蛋白,其功能為轉換mrp operon的啟動子,進而調控MR/P纖毛的表現,本研究發現RpoE正向調控mrpI並使得mrp operon轉換成開啟模式。我們又發現了RpoE抑制奇異變形桿菌爬行的能力,進而抑制其爬行時溶血酶的生成及對細胞產生的毒性。人類的表皮細胞可分泌細胞激素以吸引中性球來殺死致病菌,而在泌尿道感染中,膀胱細胞可分泌IL-8達到此目的。本研究發現rpoE 突變株可刺激人類膀胱癌細胞NTUB1產生大量的IL-8而rseA突變株卻相反,造成此現象的原因可能是LPS修飾發生改變。動物實驗中發現rpoE突變株幾乎無法在小鼠泌尿道中生存,且RpoE可被尿液中的成分尿素所活化。為探討為何rpoE突變株無法小鼠泌尿道中生存的原因,我們利用組織免疫染色觀察三種菌株感染小鼠後的膀胱及腎臟,我們發現在第一天時rpoE mutant刺激大量的免疫細胞聚集而使其容易被清除,因此RpoE對於奇異變形桿菌在泌尿道的感染中扮演著重要的角色。 | zh_TW |
| dc.description.abstract | Proteus mirabilis (P. mirabilis) is an opportunistic human pathogen causing urinary tract infection (UTI) in individuals with abnormalities or long-term catheterization. Innate immune responses induced or mediated by pattern recognition receptor signalling, antimicrobial peptides, and neutrophils are vital to clear bacteria during UTIs. Bacterial virulence and fitness factors include fimbriae and flagella that may function in immune evasion. The mechanism by which P. mirabilis sense the host environment and then trigger immune evasion is still unclear. In this study, we showed that sigma factor E (RpoE), which regulates expression of genes for survival in stresses, is important for host immune evasion.
To investigate the role of P. mirabilis RpoE in immune evasion, we constructed rpoE mutant and rseA mutant (RseA, an anti-sigma E factor, rseA mutation causing RpoE overexpression). We found that the expression of mannose-resistant Proteus-like (MR/P) fimbriae of rseA mutant was higher than others, while the expression of flhDC and fliC1 of rseA mutant was the lowest in the three strains by qPCR assay. MrpI is a recombinase that control orientation of mrp operon promoter and we observe RpoE positively regulates mrpI by real-time PCR. The promoter invertible element (IE) assay also showed IE of wild-type and rseA mutant are largely on compared to rpoE mutant. Consistent with the results, rseA mutant had the best invasion ability and swarmed the least of all. Human urothelial cells have been known to secrete IL-8 cytokines to attract neutrophils to eliminate the pathogens. In this regard, we found NTUB1 produced more IL-8 and had the highest level of IL-8 mRNA after infecting with rpoE mutant by cytokine array and qPCR. The mouse UTI model further indicated almost no colonization of rpoE mutant in the bladder and kidney. Finally, we found that urea (the major component in urine) and polymyxin B (a kind of antimicrobial peptides) can induce high expression of rpoE in the wild-type. Altogether, our findings support that rseA mutant and rpoE mutant were phenotypically distinct and for the first time, we demonstrate that RpoE is important in sensing environmental cues and subsequently triggers expression of genes associated with virulence and fitness factors to evade host immunity and build up UTIs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:55:01Z (GMT). No. of bitstreams: 1 ntu-103-D98424005-1.pdf: 2391139 bytes, checksum: 4b133f151732d0cf9e670fa3e163e454 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖目錄 x 表目錄 xii 第一章 緒論 1 第一節 奇異變形桿菌 (Proteus mirabilis)的介紹 1 第二節 P. mirabilis造成泌尿道感染的致病因子 1 第三節 P. mirabilis的感染與宿主的免疫關係 4 第四節Sigma factor E (RpoE)的基本介紹 5 第五節 RpoE在致病菌中所扮演的角色 6 第六節 研究目的 7 第二章 實驗方法與材料 8 第一節 實驗菌株、質體、引子及基因比對 8 第二節 質體與突變株之構築 9 《基因體DNA (genomic DNA) 萃取》 10 《聚合酶連鎖反應 (Polymerase chain reaction;PCR)》 11 《DNA膠體純化 (gel purification)》 12 《TA 選殖》 13 《勝任細胞製備及轉型反應 (transformation)》 14 《電穿孔法》 14 《質體DNA (plasmid DNA) 萃取》 15 《限制酶作用》 16 《DNA黏合 (ligation)》 17 《細菌接合生殖( conjugation )及同源重組》 18 《南方墨點法 (southern blotting)》 19 《Reporter assay》 21 第三節 Western blotting 22 《RpoE、FliC1、MrpA及UreD蛋白的表現與純化》 23 《不連續膠體電泳 (SDS-PAGE)》 24 《抗體製備》 25 《Western blotting》 26 第四節 RpoE對P. mirabilis生長的影響 28 《Growth rate》 28 第五節 RpoE對P. mirabilis鞭毛的影響 29 《表面移行試驗 (Swarming distance)》 29 《細菌在LB plate上的生長型態》 29 《The rpoE regulation in flagellin》 30 實驗方法 (Swarmer cell): 30 實驗方法 (Swimmer cell): 30 《RNA抽取 (RNA extraction)》 31 《反轉錄RNA (reverse transcription)》 32 《同步定量PCR (Real-time PCR)》 33 第六節 RpoE對P. mirabilis hemolysin的影響 34 《溶血素活性 (hemolysin activity) 試驗》 34 第七節 RpoE對P. mirabilis MR/P纖毛的影響 35 《細胞入侵 (cell invasion) 試驗》 35 《The rpoE regulation in MR/P fimbriae》 36 mrpA,mrpJ及mrpI的表現量 36 IE assay 36 第八節 RpoE對宿主免疫的影響 37 《細菌對膀胱表皮細胞的毒性(Cytotoxicity)》 38 《Survival rate in macrophage》 39 《Cytokine array》 40 《IL-8,CXCL1,MIF and PAI-1 expression of NTUB1》 41 《脂多醣 (lipopolysaccharide) 萃取》 42 《脂多醣 (lipopolysaccharide, LPS) 定量》 43 《銀染色 (silver stain)》 44 《IL-8 expression of NTUB1 (Real-time PCR)》 45 《液態培養基稀釋法測定最小抑菌濃度 (MIC)》 46 第九節 動物實驗 47 《Infection of mice》 47 《Hematoxylin and eosin stain》 48 第十節 RpoE的活化條件 49 《Reporter assay》 49 第十一節 RpoE與外膜蛋白的關係 50 《外膜蛋白 (outer membrane protein) 萃取》 50 《Reporter assay》 51 《以real-time PCR測試ompA及ompF基因的表現》 52 第三章 結果 53 第一節 質體與突變株之構築 53 第二節 RpoE對P. mirabilis爬行能力(Swarming)的影響 54 第三節 RpoE對P. mirabilis MR/P fimbriae的影響 55 第四節 RpoE對宿主免疫的影響 56 第五節 動物實驗 57 第六節 RpoE的活化條件 58 第七節 RpoE與外膜蛋白的關係 58 第八節 Summary 59 第四章 討論 60 第一節 RpoE的活化條件及其在壓力環境下的重要性 60 第二節 RpoE對P. mirabilis毒力因子以及宿主免疫反應的影響 61 參考文獻 67 圖 75 表 91 附錄 92 相關著作 99 本篇論文發表 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 毒力因子 | zh_TW |
| dc.subject | 奇異變形桿菌 | zh_TW |
| dc.subject | 免疫逃避 | zh_TW |
| dc.subject | Proteus mirabilis | en |
| dc.subject | Sigma factor E | en |
| dc.subject | virulence factor | en |
| dc.subject | immune evasion | en |
| dc.title | 奇異變形桿菌中rpoE基因功能之研究 | zh_TW |
| dc.title | New aspects of RpoE in Uropathogenic Proteus mirabilis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄧麗珍,賴信志,賈景山,胡小婷 | |
| dc.subject.keyword | 奇異變形桿菌,毒力因子,免疫逃避, | zh_TW |
| dc.subject.keyword | Proteus mirabilis,Sigma factor E,virulence factor,immune evasion, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-12-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
