請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55255完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張帆人 | |
| dc.contributor.author | Cheng-Chang Ho | en |
| dc.contributor.author | 何政昌 | zh_TW |
| dc.date.accessioned | 2021-06-16T03:53:27Z | - |
| dc.date.available | 2018-02-04 | |
| dc.date.copyright | 2015-02-04 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-08 | |
| dc.identifier.citation | [1]
K. Abdel-Malek, W. Yu, J. Yang, and K. Nebel,“A mathematical method for ergonomic-based design: placement,”International Journal of Industrial Ergonomics, vol. 34, pp. 375-394, 2004. [2] J. J. Craig, Introduction to Robotics Mechanics and Control, 3rd ed., New Jersey: Prentice Hall, 2004. [3] M. W. Spong, S. Hutchinson , and M. Vidyasagar, Robot Modeling and Control, New Jersey: John Wiley & Sons, Inc., 2005. [4] H. S. Liu, X. B. Lai, S. Q. Zhu, and X. F. Liao,“Jerk-bounded and -continuous trajectory planning for a 6-DOF serial robot manipulator with revolute joints,”Proceedings of the 30th Chinese Control Conference, Yantai, China, 2011, pp. 3462-3466. [5] W. Rackl , R. Lampariello, and G. Hirzinger,“Robot excitation trajectories for dynamic parameter estimation using optimized B-splines,”IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, U.S.A, 2012, pp.2042-2047. [6] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars,“Probabilistic roadmaps for path planning in high-dimensional configuration spaces,”IEEE Transactions on Robotics and Automation, vol. 12, pp. 566-580, 1996. [7] S. B. Niku, Introduction to Robotics: Analysis, Systems, Applications, New Jersey :Prentice Hall, 2003. [8] R. Bohlin, and L. E. Kavraki,“Path planning using lazy PRM,”IEEE International Conference on Robotics and Automation (ICRA), San Francisco, U.S.A., 2000, pp. 521-528. [9] J. Polden, Z. Pan, and N. Larkin,“Path planning for industrial robots; Lazy Significant Edge Algorithm (LSEA),”IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 2013, pp. 979-984. [10] L. P. Ellekilde,“Directed visibility based probabilistic roadmaps,”Proceedings of the 41st International Symposium on Robotics, Munich, Germany, 2014, pp. 489-496. [11] S. M. Lavalle, Rapidly-Exploring Random Trees: A New Tool for Path Planning, Technical report, Iowa: Iowa State University, 1998. [12] D. H. Kim, S. J. Lim, D. H. Lee, J. Y. Lee, and C. S. Han,“A RRT-based motion planning of dual-arm robot for (Dis)assembly tasks,”Proceedings of the 44th International Symposium on Robotics (ISR), Seoul, South Korea, 2013, pp. 1-6. [13] C. Lopera, H. Tome, A. R. Tsouroukdissian, and F. Stulp,“Comparing motion generation and motion recall for everyday mobile manipulation tasks,”Proceedings of the 12th IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan, 2012, pp. 146-152. [14] K. Koo, X. Jiang, A. Konno, and M. Uchiyama“End effector constrained path planning for 7DOF manipulator,”IEEE/SICE International Symposium on System Integration (SII), Sendai, Japan, 2010, pp. 287-292. [15] J. J. Kuffner, and S. M. LaValle,“RRT-connect: An efficient approach to single-query path planning,”IEEE International Conference on Robotics and Automation(ICRA), San Francisco, U.S.A., 2000, pp. 995-1001. [16] F. Burget, A. Hornung, and M. Bennewitz,“Whole-body motion planning for manipulation of articulated objects,”IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, pp. 1656-1662. [17] L .Biagiotti, and C. Melchiorri,“Online trajectory planning and filtering for robotic applications via B-spline smoothing filters,”IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 2013, pp. 5668-5673. [18] J. Zhai, W. Yan, Z. Fu, and Y. Z. Zhao,“Kinematic analysis of a dual-arm humanoid cooking robot,”IEEE International Conference on Mechatronics and Automation, Chengdu, China, 2012, pp. 249 - 254. [19] X. F. Zha,“Optimal pose trajectory planning for robot manipulators,”Mechanism and Machine Theory, vol. 37, pp. 1063-1086, 2002. [20] J. Denavit, and R. S. Hartenberg,“A kinematic notation for lower-pair mechanisms based on matrices,”Journal of Applied Mechanics, vol. 22, pp. 215–221, 1995. [21] S. V. Shah, S. K. Saha, and J. K. Dutt,“Denavit-Hartenberg parameterization of Euler angles,”ASME J. Computational and Nonlinear Dynamics, vol. 7, pp. 021006-1 to 10, 2012. [22] B. Kenwright, Dual-quaternions: From Classical Mechanics to Computer Graphics and Beyond, [2012-10], http://www.xbdev.net. [23] S. B. Choe, Statistical Analysis of Orientation Trajectories via Quaternions with Applications to Human Motion, Doctoral dissertation, University of Michigan, Michigan, 2006. [24] I. U. Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schroeder,“Multiscale representations for manifold-valued data,”SIAM Journal on Multiscale Modeling and Simulation, vol. 4, pp. 1201-1232, 2006. [25] C. De Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978. [26] P. S. Tsai, L. S. Wang, F. R. Chang, and T. F. Wu,“Systematic backstepping design for B-spline trajectory tracking control of the mobile robot in hierarchical model,”IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, 2004, pp. 713 – 718. [27] P. S. Tsai, Modeling and Control for Wheeled Mobile Robots with Nonholonomic Constraints, Doctoral dissertation, Taipei: National Taiwan University, 2006. [28] Y. H. Yang, W. L. Yang, M. C. Wu, Q. W. Yang, and Y. C. Xue,“A new type of adaptive fuzzy PID controller,”Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010, pp. 5306-5310. [29] N. Thanana, and L. Thananchai, “Fuzzy self-tuning PID control of hydrogen-driven pneumatic artificial muscle actuator,”Journal of Bionic Engineering, vol. 10, pp. 329-340, 2013. [30] J. K. Niu, Q. Z. Song, and X. G. Wang, “Fuzzy PID control for passive lower extremity exoskeleton in swing phase,”IEEE 4th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 2013, pp. 185-188. [31] E. P. Dadios, Fuzzy Logic - Controls, Concepts, Theories and Applications, InTech, 2012. [32] G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, 6th ed., New Jersey: Prentice Hall, 2010. [33] B. C. Tsai, W. W. Wang, L. C. Hsu, L. C. Fu, and J. S. Lai, “An articulated rehabilitation robot for upper limb physiotherapy and training,”IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 2010, pp. 1470-1475. [34] L. Jiang, X. J. Huo, Y. W. Liu, and H. Liu,“An analytical inverse kinematic solution with the reverse coordinates for 6-DOF manipulators,” IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 2013, pp.1552-1558. [35] C. H. Huang, Y. T. Chiang, C. C. Ho, and F. R. Chang,“Dual quaternion approaches for inverse kinematics problem of robot arms,” Proceedings of 2013 National Symposium on Systems Science and Engineering, New Taipei City, Taiwan, 2013, (in Chinese). [36] S. Christian, K. Yiannis, N. Lazaros, G. Xavi, Q. Peng, V. D. Dimos, and K. Danica, “Dual arm manipulation—A survey,” Robotics and Autonomous Systems, vol. 60, pp. 1340-1353, 2012. [37] R. O. Ambrose, H. Aldridge, R. S. Askew, R. R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark, “Robonaut: NASA's space humanoid,” Intelligent Systems and their Applications, vol. 15, pp. 57-63, 2000. [38] Y. H. Gan, and X. Z. Dai, “Human-like manipulation planning for articulated manipulator,” Journal of Bionic Engineering, vol. 9, pp. 434-445, 2012. [39] A. M. Zanchettin, L. Bascetta, and P. Rocco,“Acceptability of robotic manipulators in shared working environments through human-like redundancy resolution,”Applied Ergonomics, vol. 44, pp. 982-989, 2013. [40] S. W. Chang, Y. T. Chiang, and F. R. Chang, “SLERP-based optimal TRIAD algorithm,” SICE Annual Conference, Taipei, Taiwan, 2010, pp.331-335. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55255 | - |
| dc.description.abstract | 擬人化已成為新一代機器人必備的條件,擬人化的範圍不再只是外型的模仿,更著重在於機器人行為擬人化的程度。而運動規劃方法的好壞,決定了機器人的行為與人類行為是否相似的關鍵。因此本篇論文提出了一個基於雙四元數的運動規劃器,導入了四元數指數和對數映射的方式去進行空間轉換,在三維的歐基里德空間中來描述末端效應器的姿態,並透過三階分段型B-樣條曲線的方法,同時針對末端效應器的位置與姿態進行軌跡曲線規劃,以達成平滑的目標。另外,在軌跡追蹤層面,建立了一個以雙四元數為基礎的追蹤控制架構,此架構採用模糊 PID控制器為主體,透過建立模糊規則庫的方式,來對PID參數進行動態調整,有效地處理複雜的動態軌跡追蹤控制的問題。最後實現在所設計的3D雙臂機器人(DAR-I)上,並利用兩組倒茶動作的模擬實驗,來驗證曲線的平滑性以及位置與姿態的相互配合度。並與其他軌跡規劃方法進行比較,皆得到不錯的效果。 | zh_TW |
| dc.description.abstract | The inclusion of anthropomorphic features in robots has become so commonplace that robots are now expected to behave like human beings. This study presents a motion planner based on dual quaternion with the import of exponential and logarithmic maps of the quaternion for space conversion in order to describe the attitude of the end-effector in a three-dimensional Euclidean space. Trajectory curves are planned for the position and attitude of the end-effector using the segmental cubic B-spline approach in order to provide unified treatment of smoothed trajectories of position as well as attitude. For trajectory tracking, we developed a dual-quaternion-based tracking control architecture based on a fuzzy PID controller. The PID parameters are dynamically adjustable using a fuzzy rule database, which was designed to handle complex trajectory tracking control problems. Finally, the proposed method was applied to a self-designed dual arm robot-I (DAR-I) through two tea-pouring experiments to evaluate the effects of treating of position and attitude in a unified manner. Our simulation results demonstrated better performance compared with those of other methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T03:53:27Z (GMT). No. of bitstreams: 1 ntu-104-D95921006-1.pdf: 4018348 bytes, checksum: c1424892db8331a2737056061b94735b (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract v Table of Content vi List of Figures viii List of Tables x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.3 Thesis Highlights 7 1.4 Thesis Organization 8 Chapter 2 Preliminaries 10 2.1 Quaternions 11 2.2 Dual Quaternions 15 2.3 Exponential and Logarithmic Maps for Quaternions 18 2.4 Forward Kinematics Model with Dual Quaternions 21 Chapter 3 Motion Planning Strategies 25 3.1 Overview of Proposed Method 25 3.2 Selection of Passed Points 27 3.3 Trajectory Generation 28 3.3.1 B-spline Curves 29 3.3.2 Segmental Cubic B-spline Curve 41 Chapter 4 Control of Motion Tracking 50 4.1 Fuzzy PID Controller Design 54 4.2 Inverse Kinematics 70 4.2.1 Jacobian Matrix Computation 71 4.2.2 Joint Constraints 74 4.3 Application to DAR-I Robot 77 Chapter Simulation Results 82 5.1 Simulation Scenario 1: Pouring Tea Using a Single Arm 84 5.2 Simulation Scenario 2: One Arm Pouring Tea with One Arm Holding Teacup 89 Chapter 6 Conclusions 95 6.1 Conclusions and Contributions 95 6.2 Future Works 96 Reference 98 Appendix 102 A. Derivation of Zero-order Basis Function Coefficients 102 B. Normalization of Zero-order Basis Function Coefficients 107 | |
| dc.language.iso | en | |
| dc.subject | 雙臂機器人 | zh_TW |
| dc.subject | 雙四元數 | zh_TW |
| dc.subject | 四元數 | zh_TW |
| dc.subject | 運動規劃器 | zh_TW |
| dc.subject | 軌跡規劃 | zh_TW |
| dc.subject | B樣條曲線 | zh_TW |
| dc.subject | Dual arm robot | en |
| dc.subject | Motion planner | en |
| dc.subject | Quaternion | en |
| dc.subject | Dual quaternion | en |
| dc.subject | B-spline curve | en |
| dc.subject | Trajectory planning | en |
| dc.title | 基於雙四元數之B樣條曲線運動規劃方法 | zh_TW |
| dc.title | Dual Quaternion Based Motion Planning via B-Spline Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李祖添,王立昇,林君明,卓大靖,姜義德 | |
| dc.subject.keyword | 軌跡規劃,運動規劃器,四元數,雙四元數,B樣條曲線,雙臂機器人, | zh_TW |
| dc.subject.keyword | Trajectory planning,Motion planner,Quaternion,Dual quaternion,B-spline curve,Dual arm robot, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-01-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
