請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55253
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊鏡堂 | |
dc.contributor.author | You-Ting Dong | en |
dc.contributor.author | 董祐廷 | zh_TW |
dc.date.accessioned | 2021-06-16T03:53:22Z | - |
dc.date.available | 2016-03-16 | |
dc.date.copyright | 2015-03-16 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-08 | |
dc.identifier.citation | [1] Babushok, V., Tsang, W., Linteris, G. T., and Reinelt, D., 1998, ' Chemical Limits to Flame Inhibition,' Combustion and Flame, vol. 115, pp. 551-560.
[2] Bartok, W. and Sarofim, A. F., 1991, Fossil Fuel Combustion: A Source Book, Wiley, New York, pp. 804-807. [3] Brokaw, R. S., 1967, ' Ignition Kinetics of the Carbon Monoxide-Oxygen Reaction,' Proceedings of the Combustion Institute, vol. 11, pp. 1063-1073. [4] Burbano, H. J., Pareja, J., and Amell, A. A., 2011, 'Laminar Burning Velocities and Flame Stability Analysis of H2/CO/Air Mixtures with Dilution of N2 and CO2,' International Journal of Hydrogen Energy, vol. 36, pp. 3232-3242. [5] Chaos, M. and Dryer, F. L., 2008, 'Syngas Combustion Kinetics and Applications,' Combustion Science and Technology, vol. 180, pp. 1053-1096. [6] Charlston–Goch, D., Chadwick, B. L., Morrison, R. J. S., Campisi, A., Thomsen, D. D., and Laurendeau, N. M., 2001, 'Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Premixed Flames of CO+H2+CH4 and Air at High Pressures: I. Nitrogen Fixation,' Combustion and Flame, vol. 125, pp. 729-743. [7] Chaudhuri, S., Kostka, S., Renfro, M. W., and Cetegen, B. M., 2010, 'Blowoff dynamics of bluff body stabilized turbulent premixed flames,' Combustion and Flame, vol. 157, pp. 790-802. [8] Cheng, T. S., Chang, Y. C., Chao, Y. C., Chen, G. B., Li, Y. H., and Wu, C. Y., 2011, 'An Experimental and Numerical Study on Characteristics of Laminar Premixed H2/CO/CH4/Air Flames,' International Journal of Hydrogen Energy, vol. 36, pp. 13207-13217. [9] Dam, B., Ardha, V., and Choudhuri, A., 2010, 'Laminar Flame Velocity of Syngas Fuels,' Journal of Energy Resources Technology, vol. 132, pp. 044501. [10] Das, A. K., Kumar, K., and Sung, C. J., 2011, 'Laminar Flame Speeds of Moist Syngas Mixtures,' Combustion and Flame, vol. 158, pp. 345-353. [11] Dong, C., Zhou, Q., Zhao, Q., Zhang, Y., Xu, T., and Hui, S., 2009, 'Experimental Study on the Laminar Flame Speed of Hydrogen/Carbon Monoxide/Air Mixtures,' Fuel, vol. 88, pp. 1858-1863. [12] Fu, J., Tang, C., Jin, W., Thi, L. D., Huang, Z., and Zhang, Y., 2013, 'Study on Laminar Flame Speed and Flame Structure of Syngas with Varied Compositions Using OH-PLIF and Spectrograph,' International Journal of Hydrogen Energy, vol. 38, pp. 1636-1643. [13] Garcia-Armingol, T., Ballester, J., and Smolarz, A., 2013, 'Chemiluminescence-based Sensing of Flame Stoichiometry: Influence of the Measurement Method,' Measurement, vol. 46, pp. 3084-3097. [14] Gore, J. P. and Zhan, N. J., 1996, 'NOx Emission and Major Species Concentra- tion in Partially Premixed Laminar Methane/Air Co-flow Jet Flames,' Combustion and Flame, vol. 105, pp. 414-427. [15] Guo, H., Smallwood, G. J., Liu, F., Ju, Y., and Gulder, O. L., 2005, 'The Effect of Hydrogen Addition on Flammability Limit and NOx Emission in Ultra-lean Counterflow CH4/Air Premixed Flames,' Proceedings of the Combustion Institute, vol. 30, pp. 303-311. [16] Hardalupas, Y. and Orain, M., 2004, 'Local Measurements of the Time-dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission from a Flame,' Combustion and Flame, vol. 139, pp. 188-207. [17] He, Y., Wang, Z., Yang, L., Whiddon, R., Li, Z., Zhou, J., Cen, K., 2012, 'Investigation of Laminar Flame Speeds of Typical Syngas Using Laser Based Bunsen Method and Kinetic Simulation,' Fuel, vol. 95, pp. 206-213. [18] Ikoku, C. U., 1984, Natural Gas Production Engineering, John Wiley & Sons. [19] Kojima, J., Ikeda, Y. and Nakajima, T., 2000, 'Spatially Resolved Measurement of OH*, CH*, and C2* Chemiluminescence in the Reaction Zone of Laminar Methane/Air Premixed Flames, ' Proceedings of the Combusion Institute, vol. 28, pp. 1757-1764. [20] Kojima, J., Ikeda, Y., and Nakajima, T., 2005, 'Basic Aspects of OH(A), CH(A), and C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane–Air Premixed Flames,' Combustion and Flame, vol. 140, pp. 34-45. [21] Law, C. K., 2006, Combustion Physics, Cambridge University Press, New York. [22] Lieuwen, T., Yang, V., Yetter, R., 2010, Synthesis Gas Combustion: Fundamentals and Applications, CRC Press. [23] Lin, H.C., Cheng, T.S., Chen, B.C., Ho, C.C., and Chao, Y. C., 2009, 'A Comprehensive Study of Two Interactive Parallel Premixed Methane Flames on Lean Combustion,' Proceedings of the Combustion Institute, vol. 32, pp. 995-1002. [24] Mishra, T., Datta, A., and Mukhopadhyay, A., 2006, 'Comparison of the Structures of Methane–Air and Propane–Air Partially Premixed Flames,' Fuel, vol. 85, pp. 1254-1263. [25] Natarajan, J., Lieuwen, T., and Seitzman, J., 2007, 'Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure,' Combustion and Flame, vol. 151, pp. 104-119. [26] Pareja, J., Burbano, H. J., and Ogami, Y., 2010, 'Measurements of the Laminar Burning Velocity of Hydrogen–Air Premixed Flames,' International Journal of Hydrogen Energy, vol. 35, pp. 1812-1818. [27] Ragland, K. W., and Bryden, K. M., 2011, Combustion Engineering, Second Edition, CRC Press. [28] Rumminger, M. D., Linteris, G. T., 2000, 'The Role of Particles in the Inhibition of Premixed Flames by Iron Pentacarbonyl,' Combustion and Flame, vol. 123, pp. 82-94. [29] Sahu, K., Kundu, A., Ganguly, R., and Datta, A., 2009, 'Effects of Fuel Type and Equivalence Ratios on the Flickering of Triple Flames,' Combustion and Flame, vol. 156, pp. 484-493. [30] Schefer, R., 2003, 'Hydrogen Enrichment for Improved Lean Flame Stability,' International Journal of Hydrogen Energy, vol. 28, pp. 1131-1141. [31] Strehlow, R. A., 1984, Combustion Fundamentals, McGraw-Hill. [32] Whitty, K. J., Zhang, H. R., and Eddings, E. G., 2008, 'Emissions from Syngas Combustion,' Combustion Science and Technology, vol. 180, pp. 1117-1136. [33] Williams, T. C. and Shaddix, C. R., 2007, 'Contamination of Carbon Monoxide with Metal Carbonyls: Implications for Combustion Research,' Combustion Science and Technology, vol. 179, pp. 1225-1230. [34] Yamamoto, K., Kato, S., Isobe, Y., Hayashi, N., and Yamashita, H., 2011, 'Lifted Flame Structure of Coannular Jet Flames in a Triple Port Burner,' Proceedings of the Combustion Institute, vol. 33, pp. 1195-1201. [35] Yang, J. T., Chang, C. C., and Pan, K. L., 2002, 'Flow Structures and Mixing Mechanisms Behind a Disc Stabilizer With a Central Fuel Jet,' Combustion Science and Technology, vol. 174, pp. 93-124. [36] Yetter, R. A., Dryer, F. L., and Rabitz, H., 1991, 'A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics,' Combustion Science and Technology, vol. 79, pp. 97-128. [37] Zhen, H. S., Cheung, C. S., Leung, C. W., and Choy, Y. S., 2012, 'A Comparison of the Emission and Impingement Heat Transfer of LPG–H2 and CH4–H2 Premixed Flames,' International Journal of Hydrogen Energy, vol. 37, pp. 10947-10955. [38] 林泓瑋,2010,環形貧油火焰特性與注入空氣共伴流之影響,國立台灣大學機械工程學系碩士論文。 [39] 陳靖瑋,2011,三環丙烷火焰暫態反應強度與流場之交互作用研究,國立台灣大學機械工程學系碩士論文。 [40] 莫尚軒,2013,添加一氧化碳於衝擊丙烷火焰之燃燒特性研究,國立台灣大學機械工程學系碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55253 | - |
dc.description.abstract | 本研究將生質合成氣最主要的兩種成分:氫氣和一氧化碳,添加入預混丙烷火焰中進行混燒特性研究,實驗載具使用具有層狀化結構的環形鈍體燃燒器,利用化學螢光法擷取CH*與C2*自由基訊號強度,並量測燃燒場中的溫度分布和流場資訊,歸納出不同流速、不同當量比以及不同組成比例的氫氣與一氧化碳燃料組合對於丙烷混燒火焰的影響。
環形火焰基本型態可以分成錐焰、半錐焰與飄焰三種,對於貧油預混丙烷火焰,若於其中添加不同比例的一氧化碳或氫氣,皆能有效地增強火焰傳播速度,強化駐焰效能,雖然兩者在單位體積的熱值相近,其中氫氣穩焰的效果又較一氧化碳為佳。針對丙烷、氫氣和一氧化碳三種燃料一起混燒的火焰,在同一出口流速與當量比下,固定丙烷體積流率佔整體燃料的20 %,並改變氫氣與一氧化碳相互間的體積比率,發現當氫氣所佔比率越大時,火焰之局部溫度得以提升,透過高速粒子影像測速法(particle image velocimetry, PIV)可發現越多比例的氫氣使火焰由飄焰轉變為半錐焰,甚至是錐焰,通入的燃料有效地經過火焰面,便可將更多的熱值釋放出來。除此之外,本研究更劃分成兩種情況探討,第一:「固定出口流速1.50 m/s,改變當量比」,隨著當量比由0.55、0.50到0.45逐步地降低,火焰漸趨不穩定,化學螢光強度與溫度皆會隨之減少;第二:「固定當量比0.55,改變出口流速」:出口流速由1.50 m/s 增加到2.00 m/s時,局部的高溫會逐漸減少,CH*螢光強度極值降低,此可歸因於流速的增大不僅會迅速帶走反應區的熱量,減少鈍體區的預熱效果,而且火焰的跳脫高度增加,未能完整地包覆住燃氣出口,讓更多的燃料未通過火焰面進行燃燒反應,便逸散到空氣中,因而降低整體火焰的熱釋放率。 | zh_TW |
dc.description.abstract | In this research, two main kinds of compositions of syngas, carbon monoxide and hydrogen, have been added to premixed propane flame. A stratified burner with three concentric rings has been used to burn fuels. The objectives aim to find characteristics of co-incineration of propane and syngas flame in different exit speed, equivalence ratio and fuel compositions.
The basic flame patterns can be separated into cone flame, half-cone flame and liftoff flame when premixed fuels are only in the middle ring. The empirical results revealed that flame burning velocity can accelerate with addition of hydrogen or carbon monoxide in propane flames. However, due to its highly flammable nature, hydrogen is more powerful in stabilizing flame than carbon monoxide. Furthermore, in cases of co-incineration of propane and syngas, fixed volumetric proportion of propane and changeable mutual proportion of hydrogen and carbon monoxide are executed. As proportion of hydrogen increases, flames are stabilized and more fuels can pass through flame fronts effectively. It causes temperature distribution and CH* chemiluminescence intensity to increase. Besides, how flames react in different exit speed and equivalence ratio are also explored. On the one hand, fixed exit speed is 1.50 m/s and equivalence ratios are 0.55, 0.50 and 0.45. When equivalence ratios decrease, flames turn to unstable modes and temperature and CH* intensity diminish because of less fuel supply. On the other hand, fixed equivalence ratio is 0.55 and exit speeds are 1.50 m/s, 1.75 m/s and 2.00 m/s. As exit speeds increase, more heat can be removed easily and liftoff heights extend. The phenomena make flames unable to cover the whole middle ring and let fuels leak out which can be seen in PIV flow fields. Without burning effectively, heat release rates, temperature and CH* intensity decline accordingly. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:53:22Z (GMT). No. of bitstreams: 1 ntu-104-R01522302-1.pdf: 6304769 bytes, checksum: f8a199d730a6e947022c68a030977dd1 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xi 符號說明 xii 第一章 前言 1 第二章 文獻回顧 3 2.1. 合成氣燃燒特性 4 2.1.1. 火焰傳播速度與火焰型態的變化 4 2.1.2. 合成氣燃燒的化學反應 6 2.1.3. 廢氣的排放 7 2.1.4. 一氧化碳與鋼瓶的反應 8 2.1.5. 稀釋效應 8 2.2. 火焰與流場間的交互作用 9 2.2.1. 空氣共伴流 10 2.2.2. 鈍體結構的影響 10 2.2.3. 多重火焰之交互作用 11 2.3. 燃燒系統之光學檢測 12 2.4. 文獻總結 14 第三章 研究方法 15 3.1. 燃燒載具 16 3.2. 燃氣供應 16 3.2.1. 燃料種類 16 3.2.2. 流量控制系統與配置 17 3.3. 實驗參數設計 18 3.4. 火焰型態拍攝 19 3.5. 化學螢光法 21 3.5.1. 高速攝影機與鏡頭 22 3.5.2. 影像增強器 24 3.5.3. 光學濾鏡 25 3.6. 溫度量測 25 3.7. 高速粒子影像測速法 (PIV) 26 3.7.1. 雷射系統 28 3.7.2. 追蹤粒子 29 第四章 結果與討論 30 4.1. 環形貧油預混火焰型態 30 4.1.1. 預混丙烷火焰型態與操作區間 30 4.1.2. 添加一氧化碳對預混丙烷火焰之影響 32 4.1.3. 添加氫氣對預混丙烷火焰之影響 34 4.2. 環形貧油預混火焰之化學螢光強度分佈 35 4.2.1. 預混丙烷/一氧化碳火焰化學螢光分佈 35 4.2.2. 預混丙烷/氫氣火焰化學螢光分佈 38 4.3. 合成氣與丙烷混燒之特性 40 4.3.1. 合成氣與丙烷混燒之操作區間與火焰型態 40 4.3.2. 固定出口流速並改變當量比的化學螢光強度 46 4.3.3. 固定當量比並改變出口流速的火焰強度 48 4.3.4. 溫度分布 50 4.3.5. PIV燃燒流場分析 57 4.4. 加入空氣共伴流之影響 60 4.4.1. 火焰型態變化 60 4.4.2. 火焰型態轉變 62 第五章 結論 65 參考文獻 68 附錄 論文進度甘梯圖 73 | |
dc.language.iso | zh-TW | |
dc.title | 丙烷與合成氣混燒特性研究 | zh_TW |
dc.title | Characteristics of Co-incineration of Propane and Syngas Flame | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王興華,楊瑞珍,吳宗信 | |
dc.subject.keyword | 鈍體燃燒,合成氣燃燒,化學螢光法,高速粒子影像測速法, | zh_TW |
dc.subject.keyword | Bluff-body combustion,Syngas combustion,Chemiluminescence,PIV, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。