請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55251
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 白書禎 | |
dc.contributor.author | Huan-Hua Chen | en |
dc.contributor.author | 陳煥樺 | zh_TW |
dc.date.accessioned | 2021-06-16T03:53:17Z | - |
dc.date.available | 2020-02-04 | |
dc.date.copyright | 2015-02-04 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-01-08 | |
dc.identifier.citation | 1. Alexander, G. B., Heston, W. M., Iler , R. K., The Solubility of Amorphous Silica in Water, The Journal of Physical Chemistry, 58.6 (1954) 453-455.
2. Chan, S. H.,A review on solubility and polymerization of silica, Geothermics, 18(1989) 49-56. 3. Dore, J. E., Houlihan, T., Hebel, D. V., Tien, G., Tupas, L., Karl, D. M., Freezing as a method of sample preservation for the analysis of dissolved inorganic nutrients in seawater, Mar. Chem., 53 (1996) 173-185. 4. Berner, E. K., Berner, R. A., Global environment: Water, Air, and geochemical cycles, 2nd edition, Princeton University Press (2012) pp.444. 5. Grasshoff, K., Ehrhardt, M., Kremling, K. eds., Determination of nutrients, In: Methods of seawater analysis, 2nd edition, Verlag Chemie Gmbh, Weinheim., (1983) pp.600. 6. Hem, J. D., Study and Interpretation of the Chemical Characteristics of Natural Water, 3rd edition, U. S. Geological Survey, Alexandria, (1985) pp.263. 7. Morel, F.M.M., Hering, J.G. eds., Principle and applications of aquatic chemistry, John Wiley & Sons, New York, (1993) pp.570. 8. Strickland, J.D.H., The preparation and properties of silicomolybdic acid. I. The properties of alpha silicomolybdic acid, Analyst, 74 (1952) 862-867. 9. Chalmers, R.A., Sinclair, A.G., Analytical application of β-heteroply acids, Part II: The influence of complexing agents on selective formation, Anal. Chim. Acta, 34 (1966) 412-418. 10. Chalmers, R.A., Sinclair, A.G., Analytical application of β-heteroply acids, Part I: Determination of arsenic, germanium and silicon, Anal. Chim. Acta, 33 (1966) 384-390. 11. Armstrong, F.A.J., The determination of silica in sea water. J. Mar. Biol., 30 (1951) 149-160. 12. Armstrong, D.A.J., The determination of silica in sea water, J. Mar. Biol., 30 (1962) 149-160. 13. Mullin, J.B., Riley, J.P., The colorimetric determination of silicate with special reference to sea and natural waters, Anal. Chim. Acta, 12 (1955) 162-176. 14. Ramachandran, R., Gupta, P, K., An improved spectrophotometric determination of silicate in water based on molybdenum blue, Anal. Chim. Acta, 172 (1985) 307-311 15. Kato, K., Spectrophometric determination of dissolved silica based on α-molybdosilicic acid formation, Anal. Chim. Acta, 82 (1976) 401-408. 16. Smith, J.D., Milne, P.J., Spectrophotometric determination of silicate in natural waters by formation α-molybdosilicic acid and reduction with a Tin(IV)-ascorbic acid-oxalic acid mixture, Anal. Chim. Acta, 123 (1981) 263-270. 17. Strickland, J.D.H., Parsons, G.A., In: Handbook for the analysis of seawater, Canadian Research Board of Fisheries, Ottawa, Canada, (1972) 65-70. 18. Morrison, I.R., Wilson, A.L., The absorptiometric determination of silicon in water , Part. I. Formation, stability and reduction for alpha and beta molybdosilicic acids, Analyst, 88 (1963) 88-99. 19. Morrison, I.R., Wilson, A.L., The absorptiometric determination of silicon in water , II. Method for determining reactive silicon in power station water. Analyst, 88 (1963) 100-104. 20. Parsons, T. R., Maita, Y., Lalli, C.M., A manual of chemical and biological methods for seawater analysis, 1st edition, Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, (1984) pp.173. 21. Brewer, P.G., Riley J.P., The automatic determination of silicate-silicon in natural water with special reference to sea water, Anal. Chim. Acta, 35 (1966) 514-519. 22. Růžička, J., Hansen, B.H., Flow injection analysis, Part I. A new concept of fast continuous flow analysis, Anal. Chim. Acta, 78 (1975) 145-157. 23. Pai, S.C., Fang, T.H., Yang, C.C., On the determination of high concentration phosphate in nature and waste waters. Acta Oceanographica Taiwanica, 17 (1986) 84-94. 24. Thomsen, J., Johnson, K.S., Petty, R.L., Determination of reactive silicate in seawater by flow injection analysis. Anal. Chem., 55 (1983) 2378-2382. 25. 白書禎, 淡水河口的水質化學探析, 科學月刊, 32:2 (2002) 112-116. 26. 白書禎、郭廷瑜、林肇惠、史文龍、黃天壽、俞勝裕、劉政聰, 電廠鍋爐水高磷酸鹽環境中微量矽酸鹽的自動監測分析, 臺電工程月刊, 621 (1999) 42-51. 27. 方天熹, 船上營養鹽之分析與微量金屬預濃縮技術之探討, 國立臺灣大學海洋研究所碩士論文, 1988, pp.186. 28. 廖瑞芬, 水中矽酸鹽測定中矽鉬複合物之呈色反應動力研究, 國立臺灣大學海洋研究所碩士論文, 2002, pp.82. 29. 謝志強, 新型硝酸鹽分析儀之研究, 國立臺灣大學海洋研究所碩士論文, 2007,pp.67. 30. 簡怡芳, 海水矽酸鹽測定方法中遮蔽劑之機制研究, 國立臺灣大學海洋研究所碩士論文, 2008, pp.55. 31. 丁建豪, 矽磷同步分析儀之設計與海域環境之應用, 國立臺灣大學海洋研究所碩士論文, 2009, pp.65. 32. 白書禎, FLA-快速分析的新紀元, 海化實驗選輯(國立臺灣大學海洋研究所未公開文件), 7 (1992) 19-20. 33. 曾鈞懋, 藍色矽鉬對磷酸鹽測定的干擾探討, 海化實驗選輯(國立臺灣大學海洋研究所未公開文件), 9 (1993), 88-92. 34. 郭廷瑜、白書禎, 氫鉬比對黃色矽鉬反應的影響, 海化實驗選輯(國立臺灣大學海洋研究所未公開文件),12 (1996) 13-15. 35. 鄭光龍、白書禎,氫鉬比對黃色矽鉬反應速率的關係, 海化實驗選輯(國立臺灣大學海洋研究所未公開文件), 3 (1991) 76-79. 36. 楊忠誠, 矽酸鹽的故事-談矽鉬反應的沿革史, 海化實驗選輯(國立臺灣大學海洋研究所未公開文件), 4 (1991) 22-23. 37. 郭廷瑜、白書禎, 測矽用氫鉬試劑的配方, 海化實驗選輯(國立臺灣大學海洋研究所未公開文件), 12 (1996), 4-5. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55251 | - |
dc.description.abstract | 本研究探討以鉬酸銨測定水中矽酸鹽方法中黃色矽鉬複合物之反應動力學,本文改變了矽鉬黃複合物呈色條件,測定靈敏度較低的α-矽鉬黃複合物為主。其優點為:α-矽鉬黃複合物呈色穩定且受溫、鹽度影響與磷酸鹽干擾較小。但在應用至自動分析前,則必須改善其反應在常溫下較慢的缺點。當要求靈敏度時可採用較長的光徑或在較低的波長測定。因不使用漂白劑,此法所測出之訊號應為矽酸鹽與磷酸鹽其合併吸光值:
〖Abs〗_(Si+P)^λ ={[P]×ε_p^λ +[Si]×ε_Si^λ }×b×Q_s/Q_f ×10-6+RB 其中ε_Si^λ 及ε_p^λ 為矽鉬黃及磷鉬黃複合物在波長400 nm下的摩爾吸光係數,單位為(M-1cm-1);b為光徑,單位為(cm);[Si]及[P]分別為樣品的矽酸鹽與磷酸鹽濃度,單位為(M);Qs 、Qf分別為原樣與加藥後的體積比,RB為試劑空白值,因此可算出矽酸鹽濃度,單位為(μM): [Si](μM)=(〖Abs〗_(Si+P)^λ-[P]×ε_p^λ×b×Q_s/Q_f )/(ε_Si^λ×b×Q_s/Q_f )×106 本研究發現溫度(T,oC)、鹽度(S)對於其摩爾吸光係數有些許影響,在波長400 nm測定,可用下列經驗公式修正之: ε_Si^400(T,S)(M-1cm-1) = 1166+T×(4.4-0.1532×S+0.00154×S2) 溫度(T)適用範圍20-40oC、鹽度(S)適用範圍0-35 至於磷鉬黃的摩爾吸光係數值在上述條件下,在波長400 nm測定為: ε_p^400(M-1cm-1) = 390 本研究使用醋酸鈉緩衝溶液將以上反應控制在pH=4.2-4.3之間,在常溫之下反應大約需4分鐘以上,加溫至40oC情況之下可縮短至2分鐘,其速率足以因應自動分析之要求。本文比較了兩種自動分析系統,分別為傳統連續式測定及間歇式上樣測定,後者的原理為將樣水加入試劑後,送入恆溫的流動光槽中停止幫浦運作使樣水停滯在光槽中靜待反應完成。結果發現間歇式流動分析系統較為精密準確。使用一公分長光徑測量矽酸鹽的最小解析度為1 μM,線性範圍為0-200 μM,在100 μM的濃度下的相對誤差在0.5%以下,即使在船上顛簸海況下也可操作,不但可測定外洋水柱同批不同溫度的樣品,也可適用於在河口測定同批不同溫度鹽度的樣品,分析速率可達每小時20個樣品。 | zh_TW |
dc.description.abstract | This study focuses on the reaction kinetics of the yellow α-silicomolybdenum complex for the determination of silicate in natural waters. The less sensitive yellow α-silicomolybdenum reaction has several advantages: the α-silicomolybdenum color is stable; it has less salt effect and phosphate interference. However, it is still unfavorable to be employed on automated analysis due to the slow reaction rate. To solve this problem the pH of the reaction is adjusted to 4.2-4.4 by a buffer system so as to enhance the reaction completeness to less than 4 minutes under room temperature, and can be further shortened to less than 2 min by moderate heating. Since the adding of bleaching reagent is avoided, the final absorbance may contain some signals attributed to phosphate:
〖Abs〗_(Si+P)^λ ={[P]×ε_p^λ +[Si]×ε_Si^λ }×b×Q_s/Q_f ×10-6+RB Where ε_Si^λ and ε_p^λ are molar extinction coefficients of silicomolybdic acid and phosphomolybdic acid(M-1cm-1), respectively, at a wavelength of 400(nm), b the path length(cm), [Si] and [P] the concentrations for silicate and phosphate(M),Qs and Qf represent the sample and final volume ratios and RB the reagent blank. The silicate concentration should be corrected for the phosphate interference for which the phosphate concentration has been identified by a separate channel: [Si](μM)=(〖Abs〗_(Si+P)^λ-[P]×ε_p^λ×b×Q_s/Q_f )/(ε_Si^λ×b×Q_s/Q_f )×106 The molar extinction coefficient for silicate(ε_Si^λ) was formed to be functions of temperature and salinity, but that for phosphate(ε_p^λ) is not. At the wavelength of 400 nm: ε_Si^400(T,S)(M-1cm-1)= 1166+T×(4.4-0.1532×S+0.00154×S2) ε_p^400(T,S) (M-1cm-1) = 390 20 oC < T <40oC, 0< S <35 A new automated analysis system for the determination of silicate has been proposed and it has been compared with the traditional flow injection analysis. The system uptakes samples and add reagents in a quick flow manner to fill a thermostat cuvette, then the flow is stopped so that the sample is allowed to stay in the cuvette for complete reaction. Since the determination is static and the color is fully developed, it has a higher sensitivity and better precision than do conventional methods. The minimum resolution (Abs=0.001) is 1 μM Si with 1 cm cuvette and can be lowered to 0.2 μM Si if a 5 cm long cuvette is used. The linear range is up to 200 μM Si. The precision at 100 μM Si is less than 0.5%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T03:53:17Z (GMT). No. of bitstreams: 1 ntu-104-R01241404-1.pdf: 3924379 bytes, checksum: 04ad19e5eca82c78ed89e24d06c9224a (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
摘要 i 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 簡介 1 1.2 矽酸鹽測定的原理 2 1.3 矽酸鹽測定的四個方式 3 1.4 矽酸鹽的測定問題 4 1.5 研究動機與目標 5 第二章 黃色矽鉬複合物(α態)呈色反應動力 7 2.1 簡介 7 2.2 實驗材料與方法 8 2.3 結果與討論 10 2.4 磷酸鹽干擾之測試 12 2.5 綜合討論 13 第三章 以α-矽鉬黃測定矽酸鹽方法之建立 29 3.1 概述 29 3.2 實驗室矽磷混合樣品測試 29 3.3 磷酸鹽之干擾問題 32 3.4 自然樣水之測試 33 3.5 綜合討論 35 第四章 間歇式流動分析之理念設計與實際操作 45 4.1 自動分析的文獻回顧 45 4.2 流動注入分析的問題 45 4.3 間歇式自動分析的理念與設計 46 4.4 實驗條件最佳化 48 4.5 綜合討論 49 第五章 結論 57 參考文獻 59 | |
dc.language.iso | zh-TW | |
dc.title | 以α-矽鉬黃間歇式流動分析法測定自然水體中矽酸鹽之研究 | zh_TW |
dc.title | Determination of silicate in natural waters based on the formation of the yellow α-silicomolybdenum using a step flow analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 方天熹,簡國童 | |
dc.subject.keyword | 矽酸鹽,營養鹽測定,矽鉬光度法,間歇式流動分析, | zh_TW |
dc.subject.keyword | Silicate,nutrient determination,Step flow analysis, | en |
dc.relation.page | 62 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-01-09 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。