Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55230
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔(Si-Chen Lee)
dc.contributor.authorMeng-Yu Linen
dc.contributor.author林孟佑zh_TW
dc.date.accessioned2021-06-16T03:52:23Z-
dc.date.available2015-02-04
dc.date.copyright2015-02-04
dc.date.issued2015
dc.date.submitted2015-01-15
dc.identifier.citation[1] R. E. Peierls, “Quelques Proprietes Typiques Des Corpses Solides”, Ann. I. H. Poincare, vol. 5, pp. 177–222, 1935.
[2] L. D. Landau, “Zur Th Eorie Der Phasenumwandlungen II”, Phys. Z. Sowjetunion, vol. 11, pp. 26–35, 1937.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ lectric Field ffect in Atomically Thin Carbon Films”, Science, vol. 306, pp. 666-669, October 2004.
[4] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, “Raman Spectroscopy in Graphene”, Phys. Rep., vol. 473, pp. 51-87, March 2009.
[5] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and Ph. vouris, “100-GHz Transistors from Wafer-Scale Epitaxial Graphene”, Science, vol. 327, 662, February 2010.
[6] G. Jo, M. Choe, C.-Y. Cho, J. H. Kim, W. Park, S. Lee, W.-K. Hong, T.-W. Kim, S.-J. Parl, B. H. Hong, Y. H. Kahng, and T. Lee “Large-area Patterned Multi-layer Graphene Films as Transparent Conducting Electrodes for GaN Light-emitting Diodes”, Nanotechnol., vol. 21, pp. 175201, April 2010.
[7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, . K. Geim, “Fine structure constant defines visual transparency of graphene”, Science, vol. 320, pp. 1308–1308, June 2008.
[8] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nature Nanotech., vol. 3, pp. 206–209, March 2008.
[9] E. H. Hwang, B. Y.-K. Hu, and S. D. Sarma, “Inelastic carrier lifetime in graphene”, Phys. Rev. B, vol. 76, pp. 115434, December 2007.
[10] K. K. Kam, and B. A. Parkinson, “Detailed Photocurrent Spectroscopy of The Semiconducting Group VIB Transition Metal Dichalcogenides”, J. Phys. Chem., vol. 86, pp. 463–467, February 1982.
128
[11] K. F. Mak, , C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor”, Phys. Rev. Lett., vol. 105, pp. 136805, September 2010.
[12] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Sin le-layer MoS2 transistors”, Nat. Nanotechnolo y, vol. 6, pp. 47−150, March 2011.
[13] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, . Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils”, Science, vol. 324, pp. 1312-1314, June 2009.
[14] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P.Kim, J.-Y. Choi, and B. H. Hon , “Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes”, Nature, vol. 457, pp. 706, January 2009.
[15] X. Li, W. Cai, L. Colombo, and R. S. Ruoff, “Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling”, Nano Lett., vol. 9, pp. 4268-4272, August 2009.
[16] G. A. Lopez, and E. J. Mittemeijer, “The Solubility of C in Solid Cu”, Scr. Mater., vol. 51, pp. 1-5, July 2004.
[17] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of Large-area Graphene Films for High-performance Transparent Conductive Electrodes”, Nano Lett., vol. 9, pp. 4359-4363, October 2009.
[18] A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, and P. M. Ajayan, “Novel Liquid Precursor-based Facile Synthesis of Large-area Continuous, Single, and Few-Layer Graphene Films”, Chem. Mater., vol. 22, pp. 3457-3461, May 2010.
[19] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek, and M. Siaj, “Chemical Vapor Deposition Synthesis of Graphene on Copper with Methanol, Ethanol, and Propanol Precursors”, Carbon, vol. 49, pp. 4204-4210, November 2011.
129
[20] Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang and J. Hou, “Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Source”, Acs Nano, vol. 5, pp. 3385-3390, March 2011.
[21] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large Area, Few-layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Lett., vol. 9, pp. 30-35, December 2008.
[22] Y.-H Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, “Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition”, Adv. Mater., vol. 24, pp. 2320–2325, May 2012.
[23] Y. Zhan, Z. Liu, Z. Najmaei, P. M. Ajayan, and J. Lou, Zhan, Y., Liu, Z., “Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate”, Small, vol. 8, pp. 966–971, April 2012.
[24] T.-C. Lin, W. Zhang, J.-K. Hung, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, “Wafer-scale MoS2 Thin Layers Prepared by MoO3 Sulfurization”, Nanoscale, vol. 4, pp. 6637–6641, October 2012.
[25] W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, J.-H. He, M.-Y. Chou, and L.-J. Li, “Ultrahigh-Gain Phototransistors Based on Graphene-MoS2 Heterostructures”, Sci. Rep., vol. 4, pp. 3826, January 2014.
[26] Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L.-J. Li, J.-C. Idrobo, and J. K., “Van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates”, Nano Lett., vol. 12, pp. 2784–2791, May 2012.
[27] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, and J. Lou, “Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers”, Nature Mater., vol. 12, pp. 754-759, August 2013.
[28] A. M. v. d. Zande, P. Y. Hung, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and
130
Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulfide”, Nature Mater., vol. 12, pp. 554-561, May 2013.
[29] K.-K Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, and L.-J. Li, “Growth of Large-area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates”, Nano Lett., vol. 12, pp. 1538-1544, February 2012.
[30] C. W. Lee, C.-H. Weng, L. Wei, Y. Chen, M. B. Chan-Park, C. H. Tsai, K.-C. Leou, C. H. P. Poa, J. Wang and L.-J. Li, “Toward High-performance Solution-processed Carbon Nanotube Netwrok Transistors by Removing Nanotube Bundles”, J. Phys. Chem. C., vol. 112, pp. 12089-12091, July 2008.
[31] S. J. Stuart, A. B. Tutein, and J. A. Harrison, “A Reactive Potential for Hydrocarbons with Intermolecular Interactions”, J. Chem. Phys., vol. 112, pp. 6472-6486, April 2000.
[32] C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen, and L. J. Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition”, Nano Lett., vol. 11, pp. 3612-3616, August 2011.
[33] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago, and M. A. Pimenta, “General Equation for the Determination of the Crystalline Size La of Nanographite by Raman Spectroscopy”, Appl. Phys. Lett., vol. 88, pp. 163106, April 2006.
[34] M.-Y. Lin, Y.-S. Sheng, S.-H. Chen, C.-Y. Su, L.-J. Li, and S.-Y. Lin, “Graphitic Carbon Film Formation Under Ni Templates by Radio-frequency Supttering for Transparent Electrodes Applications”, J. Vac. Sci. Technol. B, vol. 29, pp. 061202, October 2011.
[35] E. Hwang, B. Y. K. Hu, and S. D. Sarma, “Inelastic Carrier Lifetime in Graphene”, Phys. Rev. B, vol. 76, pp. 115434, September 2007.
[36] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast Graphene Photodetector”, Nature Nanotech., vol. 4, pp. 839-843, October 2009.
131
[37] K. S. Novoselov, and A. H. Castro Neto, “Two-dimensional crystals-based heterostructures: materials with tailored properties”, Phys. Scr., vol. 2012, pp. 014006, January 2012.
[38] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoliminescence From Chemically Exfoliated MoS2”, Nano Lett., vol. 11, pp. 5111-5116, October 2011.
[39] F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, T.-M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor”, Nano Lett., vol. 9, pp. 1039-1044, February 2009.
[40] W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, “Highly Efficient Gate-tunable Photocurrent Generation in Vertical Heterostructure of Layered Materials”, Nature Nanotech., vol. 8, pp. 952-958, December 2013.
[41] H. J. Song, M. Son, C. Park, H. Lim, M. P. Levendorf, A. W. Tsen, J. Park, and H. C. Choi, “Large Scale Metal-free Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication”, Nanoscale, vol. 4, pp. 3050-3054, March 2012.
[42] L. Gan, and Z. Luo, “Turning Off Hydrogen to Realized Seeded Growth of Subcentimeter Single-crystal Graphene Grain on Copper”, ACS Nano, vol. 7, pp. 9480-9488, September 2013.
[43] S. Lee, K. Lee, and Z. Zhong, “Wafer Scale Homo eneous Bilayer Graphene Films by Chemical Vapor Deposition”, Nano Lett., vol. 0, pp. 470 -4707, October 2010.
[44] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov, “Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-crystal Graphene”, ACS Nano, vol. 5, pp. 6069-6076, June 2011.
[45] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhing, and L. Cao, “Controlled Scalable Synthesis of Uniform, High-quality Monolayer and Few-layer MoS2 Films”, Sci. Rep., vol. 3, pp. 1866, May 2013.
132
[46] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibration of single- and few-layer MoS2”, ACS Nano., vol. 4, pp. 2695-2700, April 2010.
[47] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wan , “ mer in Photoluminescence in Monolayer MoS ”, Nano Lett., vol. 0, pp. 1271−1275, March 2010.
[48] K. Chang, and W. Chen, “In Situ Synthesis of MoS2/graphene Nanosheet Composits with Extraordinary High Electrochemical Performance for Lithium Ion Batteries”, Chem. Commun., vol. 47, pp. 4252-4254, March 2011.
[49] C. D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder and G. E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy”, (Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979)
[50] T. Lohmann, K.V. Klitzing, and J. H. Smet, “Four-terminal Magneto-transport in Graphene p-n Junctions Created by Spatially Selective Doping”, Nano Lett., vol. 9, pp. 1973-1979, April 2009.
[51] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-doping of Graphene Through Eletrothermal Reactions with Ammonia”, Science, vol. 324, pp. 768-771, May 2009.
[52] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, “Realization of a High Mobility Dual-gated Graphene Field-effect Transistor with Al2O3 Dielectric”, Appl. Phys. Lett., vol. 94, pp. 062107, February 2009.
[53] A. D. Wieck, and K. Ploog, “In-plane-gated Quantum Wire Transistor Fabricated with Directly Written Focused Ion Beams”, Appl. Phys. Lett., vol. 56, pp. 928, December 1989.
[54] A. D. Wieck, and K. Ploog, “Tunable In-plane-gated (IPG) Quantum Qire Structure Fabricated With Directly Written Focused Ion Beams”, Surf. Sci., vol. 229, pp. 252-255, April 1990.
[55] J. Nieder, A. D. Wieck, P. Grambow, H. Lage, D. Heitmann, K. v. Klitzing, and K. Ploog, “One-dimensional Lateral-field-effect Transistor with
133
Trench Gate-channel Insulating”, Appl. Phys. Lett., vol. 57, pp. 2695, September 1990.
[56] H. O. Li, T. Tu, G. Cao, L. J. Wang, G. C. Guo, and G. P. Guo, “Quantum Transport in Graphene Quantum Dots, New Progress on Graphene Research”, edited by J.-R. Gong ( InTech, 2013), Chap. 6.
[57] M. C. Lemme, T. J. chtermeyer, M. Baus, and H. Kurz, “A Graphene Field-effect Device”, IEEE Electron Dev. Lett., vol. 28, pp. 282-284, April 2007.
[58] H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “N-type Behavior of Graphene Supported on Si/SiO2 Substrates”, ACS Nano, vol 2, pp. 2037-2044, September 2008.
[59] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, “Atomic Structure of Graphene on SiO2”, Nano Lett., vol. 7, pp. 1643-1648, May 2007.
[60] X. F. Fan, W. T. Zheng, V. Chihaia, Z. X. Shen, and J. L. Kuo, “Interaction Between Graphene and the Surface of SiO2”, J. Phys.: Condens. Matter, vol. 24, pp. 305004 (2012).
[61] L. Weng, L. Zhang, T. P. Chen, and L. P. Rokhinson, “Atomic Force Microscope Local Oxidation Nanolithography of Graphene”, Appl. Phys. Lett., vol. 93, pp. 093107, September 2008.
[62] M.-Y. Lin, Y.-H. Chen, C.- F. Su, S.-W. Chang, S.-C. Lee, and S.-Y. Lin, “Fermi-level Shifts in Graphene Transistor with Dual-cut Channels Scraped by Atomic Force Microscope Tips”, Appl. Phys. Lett., vol. 104, pp. 023511, January 2014.
[63] F. Molitor, J. Guttinger, C. Stampfer, D. Graf, T. Ihn, and K. Ensslin, “Local Gating of a Graphene Hall Bar by Graphene Gates”, Phys. Rev. B, vol. 76, pp. 245426, December 2007.
[64] K. Nagashio, T. Nishimura and A. Toriumi, “Estimation of Residual Carrier Density Near the Dirac Point in Graphene Through Quantum Capacitance Measurement”, Appl. Phys. Lett., vol. 102, pp. 173507, May 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55230-
dc.description.abstract本論文將利用不同的成長方式來探討大面積二維材料的的成長機制。在石墨烯成長方面,利用分子束磊晶法於石墨烯的成長過程中直接提供(沉積)碳原子於基板表面。大面積的石墨烯可於較低的成長溫度分別於金屬表面或是具氧化層之基板表面形成。我們另外利用化學氣相沉積法來增加石墨烯成長時的碳量,並成功直接在藍寶石基板上製備出大面積、均勻且高品質的石墨烯薄膜。同時,也利用化學氣相沉積法,於藍寶石基板上分別製備出大面積且可層數控制的二硫化鉬薄膜與二硫化鉬/石墨烯異質結構薄膜。如此新穎的異質結構製備方式,將會使得許多對於單一二維材料上的橫向載子傳輸特性轉向縱向的異質結構元件特性。針對石墨烯元件的探討,我們試著以元件結構的方式調變石墨烯通道的費米能階。利用側向電極或雙切痕通道的結構,通道的費米能階會隨著我們施加的側向電場或切痕間距來做改變。另外,利用二硫化鉬與石墨烯行程的異質結構,光激發電子會由二硫化鉬流向石墨烯,進而產生石墨烯通道的費米能階變化。zh_TW
dc.description.abstractDifferent approaches are adopted for epitaxially grown large-area 2-D crystals in this thesis. For graphene growth, by using the molecular beam epitaxy (MBE) technique to directly supply carbon atoms during the growth, the growth temperature of the graphene films can be greatly reduced on either metal template or dielectric substrate surfaces. After increasing the carbon source amount by using chemical vapor deposition (CVD) technique, epitaxially grown 2-D crystals such as graphene, MoS2 and MoS2/graphene hetero-structures can be obtained directly on sapphire substrates. The advances of 2-D crystal hetero-structures would move the focus of current researches from lateral carrier transport behaviors of single 2-D material to those on vertical 2-D crystal hetero-structures. For device applications, the Fermi level tuning of the graphene transistors is studied by using lateral gates and dual-cuts channel architectures. By using the atomic force microscope tip scrapping on the graphene surface, these devices can be easily fabricated and show tunable Fermi levels. Photo-induced Fermi level shift is also observed on transistors fabricated with MoS2/graphene hetero-structures.en
dc.description.provenanceMade available in DSpace on 2021-06-16T03:52:23Z (GMT). No. of bitstreams: 1
ntu-104-D99943045-1.pdf: 9137051 bytes, checksum: e221d12bef9c25d1c5dc5fe2400547a9 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAbstract (in English and Chinese).................................................................................I
Contents......................................................................................................................III
List of Figures..............................................................................................................V
Chapter1 Introduction................................................................................................1
1-1 Review of the 2D Crystals, Graphene and MoS2.........................................1
1-2 Different Preparation Process of Graphene .................................................3
1-3 Preparation Approaches of MoS2 Films.......................................................4
1-4 The Organization of the thesis......................................................................6
Chapter 2 Experiment Techniques and Measurement Systems.............................9
2-1 Molecular Beam Epitaxy System (MBE).....................................................9
2-2 Chemical Vapor Deposition System (CVD)...............................................10
2-3 Atomic Force Microscopic (AFM) and Transmission Electron Microscopic (TEM) Measurement Systems..........................................................................11
2-4 Raman and Photoluminescence (PL) Measurement System......................12
2-5 X-ray Photoelectron Spectroscopy (XPS)..................................................13
Chapter 3 Graphene Growth by Using MBE.........................................................18
3-1 Introduction................................................................................................18
3-2 Experiments................................................................................................21
3-3 Results and Discussions..............................................................................27
3-3-1 Low Temperature Graphene Growth and Its Device Performance...27
3-3-2 Low Temperature Graphene Growth Underneath the Cu Template..35
3-4 Conclusion..................................................................................................42
Chapter 4 Growth of Two-Dimensional Hetero-structure by CVD.....................44
4-1 Introduction................................................................................................44
4-2 Experiments................................................................................................46
4-3 Results and Discussions..............................................................................58
4-3-1 Direct Graphene Growth on Sapphire Substrates.............................58
4-3-2 Direct MoS2 Growth on Sapphire Substrates....................................75
4-3-3 Epitaxially Grown MoS2/Graphene Hetero-Structures.....................82
IV
4-4 Conclusion..................................................................................................89
Chapter 5 Device Applications of Graphene and MoS2/graphene Hetero-structures....................................................................................92
5-1 Introduction................................................................................................92
5-2 Experiments................................................................................................95
5-3 Results and Discussions ...........................................................................104
5-3-1 Fermi-Level Tuning of Graphene Channel by Using Lateral Gate With Different Gap Sizes..................................................................104
5-3-2 Investigation of Fermi-Level Shifts in Dual-Cut Graphene Channel Transistors.........................................................................................113
5-3-3 Photo-induced Fermi Level Shift of MoS2/graphene Hetero-structures...............................................................................120
5-4 Conclusion................................................................................................124
Chapter 6 Conclusion.............................................................................................125
Reference..................................................................................................................127
Publication List.......................................................................................................134
dc.language.isoen
dc.subject分子束磊晶法zh_TW
dc.subject石墨烯zh_TW
dc.subject二硫化鉬zh_TW
dc.subject異質結構zh_TW
dc.subject化學氣相沉積法zh_TW
dc.subjectMoS2en
dc.subjectHetero-structuresen
dc.subjectMolecular Beam Epitaxyen
dc.subjectChemical Vapor Depositionen
dc.subjectGrapheneen
dc.title磊晶成長之大面積二維材料及其元件應用zh_TW
dc.titleLarge-Area Epitaxially Grown Two-Dimensional Crystals and Their Device Applicationsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.coadvisor林時彥(Shih-Yen Lin)
dc.contributor.oralexamcommittee張書維(Shu-Wei Chang),胡振國(Jenn-Gwo Hwu),林浩雄(Hao-Hsiung Lin),劉致為(Chee-Wee Liu),潘正聖(Zheng-Sheng Pan)
dc.subject.keyword石墨烯,二硫化鉬,分子束磊晶法,化學氣相沉積法,異質結構,zh_TW
dc.subject.keywordGraphene,MoS2,Chemical Vapor Deposition,Molecular Beam Epitaxy,Hetero-structures,en
dc.relation.page136
dc.rights.note有償授權
dc.date.accepted2015-01-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
8.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved